Pollution load assessment in the form of TSS and COD emitted from an urbanized catchment in the aspect of administrative pollutant discharge fees on the example of the activity of the J1 CSO in Lodz (Poland)

Authors

  • Agnieszka Brzezińska Lodz University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Institute of Environmental Engineering and Building Services, Lodz, Poland https://orcid.org/0000-0001-5913-8029
  • Lukasz Wiankowski KANEA, Lodz, Poland

DOI:

https://doi.org/10.7494/geol.2023.49.4.375

Keywords:

environmental engineering, CSO management, sewer system, weir crest level, environmental pollutant discharge fees

Abstract

The article presents the possibility of reducing fees for wastewater discharge from combined sewer overflows (CSOs) into the aquatic environment by minimizing the load emission of total suspended solids (TSS) and chemical oxygen demand (COD). The analysis was conducted based on limiting the wastewater volume discharged to the receiving water by one of the viable options, i.e., raising the overflow crest. The assessment was made on the example of the functioning J1 CSO in Lodz (in Polish: Łódź) in the years 2013–2015. An analysis of rainfall recorded in the J1 catchment area was also performed for this period. For the determination of the TSS and COD load emitted to the receiver, a predictive model based on rainfall parameters and the volume of discharged wastewater was used. To determine the wastewater volume emitted during individual activations of the J1 overflow, the model of the sewer network serving this catchment was calibrated in the EPA SWMM software. Simulations were conducted, considering different heights of the weir crest (static change). The results of the analyzes showed that raising the crest by 5 cm reduced the total fee for the J1 activity by 35% compared to its existing height in 2013 and about 40% for 2015. Raising the crest by 10 cm in 2015 enabled, for example, the J1 overflow activity to be in accordance with the applicable law. Reducing the amount of wastewater discharged to the receiver by using the overflow crest height adjustment method presented in the article may bring measurable financial and ecological benefits.

Downloads

Download data is not yet available.

References

Abdellatif M., Atherton W., Alkhaddar R.M. & Osman Y.Z., 2015. Quantitative assessment of sewer overflow performance with climate change in northwest England. Hydrological Sciences Journal, 60(4), 636–650. https://doi.org/10.1080/02626667.2014.912755.

Bachmann-Machnik A., Brüning Y., Bakhshipour A.E., Krauss M. & Dittmer U., 2021. Evaluation of combined sewer system operation strategies based on highly resolved online data. Water, 13(6), 751. https://doi.org/10.3390/w13060751.

Becouze-Lareure C., Dembélé A., Coquery M., Cren-Olivé C. & Bertrand-Krajewski J.-L., 2019. Assessment of 34 dissolved and particulate organic and metallic micropollutants discharged at the outlet of two contrasted urban catchments. Science of The Total Environment, 651(2), 1810–1818. https://doi.org/10.1016/j.scitotenv.2018.10.042.

Berggren K., Olofsson M., Viklander M., Svensson G. & Gustafsson A.-M., 2012. Hydraulic impacts on urban drainage systems due to changes in rainfall caused by climatic change. Journal of Hydrologic Engineering, 17(1), 92–98. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000406.

Bi E.G., Monette F., Gachon P., Gaspéri J. & Perrodin Y., 2015. Quantitative and qualitative assessment of the impact of climate change on a combined sewer overflow and its receiving water body. Environmental Science and Pollution Research, 22, 11905–11921. https://doi.org/10.1007/s11356-015-4411-0.

Björklund K., Bondelind M., Karlsson A., Karlsson D. & Sokolova E., 2018. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water. Journal of Environmental Management, 207, 32–42. https://doi.org/10.1016/j.jenvman.2017.11.014.

Brzezińska A., 2016. Emisja zanieczyszczeń z przelewów burzowych w aspekcie wpływu na odbiornik [Emission of pollutants from combined sewer overflows in the aspect of their impact on a receiver. Inżynieria Ekologiczna, 48, 17–27. https://doi.org/10.12912/23920629/63263.

Brzezińska A., Zawilski M. & Sakson G., 2014. The usefulness of online sensors for combined sewer overflows monitoring. Paper presented at the 13th International Conference on Urban Drainage, Kuching, Sarawak, Malaysia, 7–12 September 2014.

Brzezińska A., Zawilski M. & Sakson G., 2016. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring. Environmental Monitoring and Assessment, 188, 502. https://doi.org/10.1007/s10661-016-5461-6.

Brzezińska A., Sakson G. & Zawilski M., 2018. Predictive model of pollutant loads discharged by combined sewer overflows. Water Science & Technology, 77(7), 1819–1828. https://doi.org/10.2166/wst.2018.050.

Dienus O., Sokolova E., Nyström F., Matussek A., Löfgren S., Blom L., Pettersson T.J.R. & Lindgren P.-E., 2016. Norovirus dynamics in wastewater discharges and in the recipient drinking water source: Long-term monitoring and hydrodynamic modeling. Environmental Science & Technology, 50(20), 10851–10858. https://doi.org/10.1021/acs.est.6b02110.

Dirckx G., Schütze M., Kroll S., Thoeye C., De Gueldre G. & Van De Steene B., 2011. Cost-efficiency of RTC for CSO impact mitigation. Urban Water Journal, 8(6), 367–377. https://doi.org/10.1080/1573062X.2011.630092.

Directive, 1991. Council Directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment. OJ L 135, 30.05.1991. https://eur-lex.europa.eu/eli/dir/1991/271.

Directive, 2022. Proposal for a Directive of the European Parliament and of the Council concerning urban wastewater treatment. COM/2022/541, 26.10.2022. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:222:FIN.

Fletcher T.D., Shuster W., Hunt W.F., Ashley R., Butler D., Arthur S., Trowsdale S., Barraud S., Semadeni-Davies A., Bertrand-Krajewski J.-L., Mikkelsen P.-S., Rivard G., Uhl M., Dagenais D. & Viklander M., 2015. SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525–542. https://doi.org/10.1080/1573062X.2014.916314.

Fu X., Goddard H., Wang X. & Hopton M.E., 2019. Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs). Journal of Environmental Management, 236, 571–580. https://doi.org/10.1016/j.jenvman.2018.12.089.

Garofalo G., Giordano A., Piro P. & Spezzano G.,Vinci A., 2017. A distributed real-time approach for mitigating CSO and flooding in urban drainage systems. Journal of Network and Computer Applications, 78, 30–42. https://doi.org/10.1016/j.jnca.2016.11.004.

Główny Inspektorat Ochrony Środowiska, 2020. Syntetyczny raport z klasyfikacji i oceny stanu jednolitych części wód powierzchniowych wykonanej za 2019 rok na podstawie danych z lat 2014–2019. Warszawa.

Górska K., Szeląg B., Górski J. & Bąk Ł., 2014. Korelacje między wybranymi zanieczyszczeniami w ściekach deszczowych [Correlation between selected pollutants in rainfall wastewater]. Proceedings of ECOpole, 8(2), 497–504. https://doi.org/10.2429/proc.2014.8(2)056.

Hach Company. https://pl.hach.com/ [access: 3.03.2022].

Iqbal H. & Baig M.A., 2015. Characterization of first flush in urban highway runoffs. Environmental Engineering and Management Journal, 4(1), 45–50.

Langeveld J.G., Schilperoort R.P.S. & Weijers S.R., 2013. Climate change and urban wastewater infrastructure: here is more to explore. Journal of Hydrology, 476, 112–119. https://doi.org/10.1016/j.jhydrol.2012.10.021.

Launay M.A., Dittmer U. & Steinmetz H., 2016. Organic micropollutants discharged by combined sewer overflows – Characterisation of pollutant sources and stormwater-related processes. Water Research, 104, 82–92. https://doi.org/10.1016/j.watres.2016.07.068.

Madoux-Humery A.-S., Dorner S.M., Sauvé S., Aboul fadl K., Galarneau M., Servais P. & Prévost M., 2015. Temporal analysis of E. coli, TSS and wastewater micropollutant loads from combined sewer overflows: implications for management. Environmental Science: Processes & Impacts, 17(5), 965–974. https://doi.org/10.1039/C5EM00093A.

Madoux-Humery A.-S., Dorner S., Sauvé S., Aboulfadl K., Galarneau M., Servais P. & Prévost M., 2016. The effects of combined sewer overflow events on riverine sources of drinking water. Water Research, 92, 218–227. https://doi.org/10.1016/j.watres.2015.12.033.

Markiewicz A., Björklund K., Eriksson E., Kalmykova Y., Strömval A.-M. & Siopi A., 2017. Emissions of organic pollutants from traffic and roads: Priority pollutants selection and substance flow analysis. Science of The Total Environment, 580, 1162–1174. https://doi.org/10.1016/j.scitotenv.2016.12.074.

Petrie B., 2021. A review of combined sewer overflows as a source of wastewater-derived emerging contaminants in the environment and their management. Environmental Science and Pollution Research, 28, 32095–32110. https://doi.org/10.1007/s11356-021-14103-1.

Projekt generalny przelewów burzowych na kanalizacji ogólnospławnej miasta Łodzi, etap II, 2003. MW Projekt, Urząd Miasta Łodzi [General design of storm overflows in the combined sewage system of the city of Łódź, stage II, 2003. MW Design, City of Łódź Office].

Quaranta E., Fuchs S., Liefting H.J., Schellart A. & Pistocchi A., 2022. Costs and benefits of combined sewer overflow management strategies at the European scale. Journal of Environmental Management, 318, 115629. https://doi.org/10.1016/j.jenvman.2022.115629.

Radke M., Ulrich H., Wurm C. & Kunkel U., 2010. Dynamics and attenuation of acidic pharmaceuticals along a river stretch. Environmental Science & Technology, 44(8), 2968–2974. https://doi.org/10.1021/es903091z.

Reyes-Silva J.D., Bangura E., Helm B., Benisch, J. & Krebs P., 2020. The role of sewer network structure on the occurrence and magnitude of Combined Sewer Overflows (CSOs). Water, 12(10), 2675. https://doi.org/10.3390/w12102675.

Rozporządzenie, 2017. Rozporządzenie Rady Ministrów z dnia 27 grudnia 2017 r. w sprawie ustalania opłat podwyższonych za przekroczenie warunków wprowadzania ścieków do wód lub do ziemi. Dz.U. 2017 poz. 2501 [Regulation of the Council of Ministers of December 27, 2017 on the determination of increased fees for exceeding the conditions for discharging sewage into waters or into the ground. Journal of Laws 2017, item 2501].

Rozporządzenie, 2019. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych. Dz.U. 2019 poz. 1311 [Regulation of the Minister of Maritime Economy and Inland Navigation of July 12, 2019 on substances particularly harmful to the aquatic environment and the conditions to be met when discharging sewage into waters or ground, as well as when discharging rainwater or meltwater into waters or into devices water. Journal of Laws 2019, item 1311].

Rozporządzenie, 2021. Rozporządzenie Rady Ministrów z dnia 22 grudnia 2017 r. w sprawie jednostkowych stawek opłat za usługi wodne. Dz.U. 2017 poz. 2502, t.j. Dz.U. 2021 poz. 736 [Regulation of the Council of Ministers of December 22, 2017 on unit rates of water services. Journal of Laws 2017 item 2502, consolidated text Journal of Laws 2021, item 736].

Sojobi A.O. & Zayed T., 2022. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. Environmental Research, 203, 111609, https://doi.org/10.1016/j.envres.2021.111609.

Suresh A., Pekkat S. Subbiah S., 2023. Quantifying the efficacy of Low Impact Developments (LIDs) for flood reduction in micro-urban watersheds incorporating climate change. Sustainable Cities and Society, 95, 104601. https://doi.org/10.1016/j.scs.2023.104601.

Ustawa, 2017. Ustawa z dnia 20 lipca 2017 r. – Prawo wodne. Dz.U. 2017 poz. 1566, t.j. Dz.U. 2021 poz. 2233 [Act of July 20, 2017 – Water Law. Journal of Laws 2017 item 1566, consolidated text Journal of Laws 2021, item 2233].

Zawilski M., 2012. Analiza obciążenia hydraulicznego systemu kanalizacyjnego w skali dużej zlewni miejskiej. [in:] Dziopak J., Słyś D., Stec A., INFRAEKO 2012: Infrastruktura komunalna i gospodarka wodna: III Międzynarodowa Konferencja Naukowo-Techniczna pod patronatem Komitetu Inżynierii Środowiska PAN, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 311–320.

Zawilski M. & Sakson G., 2013. Ocena emisji zawiesin odprowadzanych kanalizacją deszczową z terenów zurbanizowanych [Assessment of total suspended solid emission discharged via storm sewerage system from urban areas]. Ochrona Środowiska, 35(2), 33–40.

Zgheib S., Moilleron R. & Chebbo G., 2012. Priority pollutants in urban stormwater: Part 1 – Case of separate storm sewers. Water Research, 46(20), 6683–6692. https://doi.org/10.1016/j.watres.2011.12.012.

Downloads

Published

2023-12-04

How to Cite

Brzezińska, A., & Wiankowski, L. (2023). Pollution load assessment in the form of TSS and COD emitted from an urbanized catchment in the aspect of administrative pollutant discharge fees on the example of the activity of the J1 CSO in Lodz (Poland). Geology, Geophysics and Environment, 49(4), 375–387. https://doi.org/10.7494/geol.2023.49.4.375

Issue

Section

Articles