Analysis of suspended solids emissions from a combined sewage system using the Stormwater Management Model (SWMM)




sewerage, modelling, SWMM, suspended solids, pollutant emission, water protection


The protection of water bodies requires the reduction of pollutant emissions from all major sources. In urbanized areas, these include: wastewater treatment plants (WWTPs) and (depending on the type of sewage system) combined sewer overflows (CSOs) and stormwater drainage outlets. WWTPs are usually monitored and emitted pollutant loads are known, but it is more difficult to assess the pollutant load discharged by CSOs and stormwater drainage systems. The article attempts to use the Stormwater Management Model (SWMM) to assess emissions of suspended solids from a large urban combined catchment. Suspended solids are the main pollutant of stormwater runoff in urban areas, and the dynamics of their emission from catchments is very diverse. The amount of suspended solids discharged by CSOs functioning in the given city was assessed in comparison with emissions from a wastewater treatment plant. The results show that CSOs discharge a pollutant load to the receiver which is comparable to WWTPs, but in a much shorter time and in a violent manner which can lead to the severe deterioration of receiving water quality. The modelling took into account the quality of dry weather sewage, the build-up of suspended solids, wash-off processes in the catchment area, and local precipitation characteristics. Factors affecting the quality of the obtained model and the accuracy of the emission level assessment were analysed.


Download data is not yet available.


Bach P.M., Rauch W., Mikkelsen P.S., McCarthy D.T. & Deletic A., 2014. A critical review of integrated urban water modelling – Urban drainage and beyond. Environmental Modelling & Software, 54, 88–107.

Barco O.J., Ciaponi C. & Papiri S., 2005. Pollution in storm water runoff. Two cases: an urban catchment and a highway toll gate area. [in:] Brelot E., Chocat B. & Desbordes M. (eds.), Sustainable techniques and strategies in urban water management: selected proceedings of Novatech 2004, the 5th International Conference on Sustainable Techniques and Strategies in Urban Water Management, held in Lyon, France, 6–10 June 2004, IWA Publishing, London.

Benedetti L., Langeveld J., Comeau A., Corominas L., Daigger G., Martin C., Mikkelsen P.S., Vezzaro L., Weijers W. & Vanrolleghem A., 2013. Modelling and monitoring of integrated urban wastewater systems: review of status and perspectives. Water Science and Technology, 68(6), 1203–1215.

Berry W., Rubinstein N., Melzian B. & Hill B., 2003. The Biological Effects of Suspended and Bedded Sediment (SABS) in Aquatic Systems: A Review. Internal Report, U.S. Environmental Protection Agency.

Bertrand-Krajewski J.-L., Clemens-Meyer F. & Lepot M. (eds.), 2021. Metrology in Urban Drainage and Stormwater Management: Plug and Pray. IWA Publishing, London.

Blumensaat F., Staufer P., Heusch S., Reußner F., Schütze M., Seiffert S., Gruber G., Zawilski M. & Rieckermann J., 2012. Water quality-based assessment of urban drainage impacts in Europe – where do we stand today? Water Science and Technology, 66(2), 304–313.

Bonhomme C. & Petrucci G., 2017. Should we trust build-up/wash-off water quality models at the scale of urban catchments? Water Research, 108, 422–437. https://doi org/10.1016/j.watres.2016.11.027.

Brzezińska A., 2019. Emisja zanieczyszczeń z przelewów burzowych kanalizacji ogólnospławnej. Wydawnictwo Politechniki Łódzkiej, Łódź.

Brzezińska A., Zawilski M. & Sakson G., 2016. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring. Environmental Monitoring and Assessment, 188, 502.

Brzezińska A., Sakson G. & Zawilski M., 2018. Predictive model of pollutant loads discharged by combined sewer overflows. Water Science and Technology, 77(7), 1819–1828.

Chang Y.-M., Chou C.-M., Su K.-T. & Tseng C.-H., 2005. Effectiveness of street sweeping and washing for controlling ambient TSP. Atmospheric Environment, 39(10), 1891–1902.

Dirckx G., Thoeye C., de Gueldre G. & van de Steene B., 2011. CSO management from an operator’s perspective: A step-wise action plan. Water Science and Technology, 63(5), 1044–1052.

Directive, 2022. Proposal for a Directive of the European Parliament and of the Council concerning urban wastewater treatment (recast). COM/2022/541, 26.10.2022.

Fletcher T.D., Andrieu H. & Hamel P., 2013. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources, 51, 261–279.

Gaume E., Villeneuve J.-P. & Desbordes M., 1998. Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model. Journal of Hydrology, 210(1–4), 38–50.

Gong Y., Liang X., Li X., Li J., Fang X., Song R., 2016. Influence of rainfall characteristics on total suspended solids in urban runoff: A case study in Beijing, China. Water, 8, 278. http://doi:10.3390/w8070278.

Group Wastewater Treatment Plant in Lodz.

Hannouche A., Chebbo G. & Joannis C., 2014. Assessment of the contribution of sewer deposits to suspended solids loads in combined sewer systems during rain events. Environmental Science and Pollution Research, 21(8).

Hossain I., Imteaz M., Gato-Trinidad S. & Shanableh A., 2010. Development of a catchment water quality model for continuous simulations of pollutants build-up and wash-off. International Journal of Civil and Environmental Engineering, 2(4), 210–217.

Hossain S., Hewa G.A. & Wella-Hewage S., 2019. A comparison of continuous and event-based Rainfall–Runoff (RR) modelling using EPA-SWMM. Water, 11(3), 611.

Kerr S.J., 1995. Silt, Turbidity and Suspended Sediments in the Aquatic Environment: An Annotated Bibliography and Literature Review. Ontario Ministry of Natura Resources, Southern Region Science & Technology Transfer Unit Technical Report TR-008.

Keupers I. & Willems P., 2013. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions. Water Science and Technology, 67(12), 2670–2676.

Liu A., Goonetilleke A. & Egodawatta P., 2015. Role of Rainfall and Catchment Characteristics on Urban Stormwater Quality. Springer, Singapore.

Maharjan B., Pachel K. & Loigu E., 2017. Modelling stormwater runoff, quality, and pollutant loads in a large urban catchment. Proceedings of the Estonian Academy of Sciences, 66(3), 225–242.

Mahbub P., Ayoko G.A., Goonetilleke A., Egodawatta P. & Kokot S., 2010. Impacts of traffic and rainfall characteristics on heavy metals build-up and wash-off from urban roads. Environmental Science and Technology, 44(23), 8904–8910.

Mannina G. & Viviani G., 2010. An urban drainage stormwater quality model: Model development and uncertainty quantification. Journal of Hydrology, 381(3–4), 248–265.

Maruéjouls T. & Binet G., 2018. Impact of two pollutant fluxes calculation methods along with uncertainties on estimation of combined sewer overflow contribution to environmental pollution at the whole urban catchment scale. Urban Water Journal, 15(8), 741–749.

Morgan D., Johnston P., Osei K. & Gill L., 2020. A modified wash-off function for stormwater suspended solids modelling. Journal of Hydrology, 584, 124672.

Rossman L., 2015. Storm Water Management Model User’s Manual Version 5.1 – manual. U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-14/413 (NTIS EPA/600/R-14/413b).

Rozporządzenie, 2019. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych. Dz.U. 2019 poz. 1311 [Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and the conditions to be met when introducing sewage into waters or into the ground, as well as when discharging rainwater or meltwater into waters or to water facilities. Journal of Laws 2019, item 1311].

Sakson G., Brzezińska A. & Zawilski M., 2017. Możliwości ograniczenia wpływu ścieków deszczowych odprowadzanych z obszarów zurbanizowanych na jakość wód powierzchniowych w aspekcie uregulowań prawnych. Ochrona Środowiska, 39(2), 27–38.

Sakson G., Brzezinska A., Bandzierz D., Olejnik D., Jedrzejczak J., Gryglik D. & Badowska E., 2022. Monitoring of wastewater quality in Lodz sewage system (Poland) – do the current solutions enable the protection of WWTP and receiving water? International Journal of Energy and Environmental Engineering, 13, 713–727.

Sakson-Sysiak G., 2019. Emisja metali ciężkich zawartych w wodach opadowych odprowadzanych z terenów zurbanizowanych. Monografie Politechniki Łódzkiej, Wydawnictwo Politechniki Łódzkiej, Łódź.

Silva T.F.D.G., Beltrán D., Nascimento N.O., Rodríguez J.P. & Mancipe-Muñoz N.P., 2022. Assessing major drivers of runoff water quality using principal component analysis: a case study from a Colombian and a Brazilian catchments. Urban Water Journal,

Temprano J., Arango Ó., Cagiao J., Suárez J.& Tejero I., 2006. Stormwater quality calibration by SWMM: A case study in Northern Spain. Water SA, 32(1), 55–63.

Tu M.-Ch. & Smith P., 2018. Modeling pollutant buildup and washoff parameters for SWMM based on land use in a semiarid urban watershed. Water Air and Soil Pollution, 229(4), 121.

Wicke D., Cochrane T.A. & O’Sullivan A., 2012a. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces. Journal of Environmental Monitoring, 14, 209–216.

Wicke D., Cochrane T.A. & O’Sullivan A., 2012b. Build-up dynamics of heavy metals deposited on impermeable urban surfaces. Journal of Environmental Management, 113, 347–354.

Wijesiri B., Egodawatta P., McGree J. & Goonetilleke A., 2016. Understanding the uncertainty associated with particle-bound pollutant build-up and wash-off: A critical review. Water Research, 101, 582–596.

Zawilski M. & Sakson G., 2010. Modelowanie spływu ścieków opadowych ze zlewni miejskiej przy wykorzystaniu programu SWMM. Cz. I. Kalibracja modelu [Modelling of precipitation sewage flow from communal catchment area SWMM software. Part I. Model calibration]. Gaz, Woda i Technika Sanitarna, 11, 32–36.

Zawilski M. & Sakson G., 2011, Modelowanie spływu ścieków opadowych ze zlewni miejskiej przy wykorzystaniu programu SWMM. Cz. II. Weryfikacja modelu [Modeling storm water runoff from urban catchments using SWMM program. Part II. Verification of the model]. Gaz, Woda i Technika Sanitarna, 9, 321–323.

Zawilski M. & Sakson G., 2013. Ocena emisji zawiesin odprowadzanych kanalizacją deszczową z terenów zurbanizowanych [Assessment of total suspended solid emission discharged via storm sewerage system from urban areas]. Ochrona Środowiska, 35(2), 33–40.

Zawilski M. & Sakson G., 2014. Modelowanie spłukiwania zanieczyszczeń stałych ze zlewni miejskich przy wykorzystaniu programu EPA SWMM. Cz. II. Kalibracja i weryfikacja modelu [Modelling of solid pollutant wash-off from urban catchment using EPA SWMM software. Part II. Model calibration and verification]. Gaz, Woda i Technika Sanitarna, 2, 57–59.

Zawilski M., Sakson G. & Brzezińska A., 2017. Zrównoważone gospodarowanie wodami opadowymi na obszarach zurbanizowanych w aspekcie wód odbiornika. [in:] Dziopak J., Słyś D. & Stec A. (red.), Infrastruktura miast, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów.




How to Cite

Sakson, G. (2023). Analysis of suspended solids emissions from a combined sewage system using the Stormwater Management Model (SWMM). Geology, Geophysics and Environment, 49(4), 389–399.