Rock type discrimination using Landsat-8 OLI satellite data in mafic-ultramafic terrain

Authors

DOI:

https://doi.org/10.7494/geol.2023.49.3.281

Keywords:

remote sensing, Landsat-8, lithology, ultramafic, spectra, SVM classification

Abstract

The mafic-ultramafic terrain of the Bhavani complex in southern India is considered for lithological mapping. The Landsat-8 OLI satellite data was used for the interpretation of different rock types in the study area. The satellite data were digitally processed using ENVI 5.6 image processing software. In the OLI data, excluding bands 8 and 9, the remaining seven bands were used for the generation of colour composite images, band ratios, principal component analysis and SVM classification. Reflectance spectral measurements were carried out in laboratory conditions for five rock samples collected from the study area. The XRF analysis was carried out to estimate the composition of major oxides present in the rock samples. The results obtained from XRF analysis were compared with the rock spectra in characterizing the spectral features of the rock types. The colour composite images (B543, B567, B456, and B457), PCA composite image (PC312 and PC456), band ratios (BR5/5 and BR4/3), colour composite images from band ratios, and SVM classified output are useful in delineation various rock types in the terrain.

Downloads

Download data is not yet available.

References

REFERENCES 23/3/5

Abdeen M.M., Allison T., Abdelsalam M.G. & Stern R.J., 2001. Application of ASTER band-ratio images for geological map-ping in arid regions; the Neoproterozoic Allaqi Suture, Egypt. Abstract with Program Geological Society of America, 3(3), 289.

Abdelsalam M.G., Stern R.J. & Berhane W.G., 2000. Mapping gossans in arid regions with Landsat TM and SIR-C images: the Beddaho Alteration Zone in northern Eritrea. Journal of African Earth Sciences, 30(4), 903–916. https://doi.org/10.1016/S0899-5362(00)00059-2.

Abrams M.J., 1984. Landsat-4 thematic mapper and thematic mapper simulator data for 1 a porphyry copper deposit. Photo-grammetric Engineering and Remote Sensing, 50(8), 1171–1173.

Abrams M.J., Brown D., Lepley L. & Sadowski R., 1983. Remote sensing for porphyry copper deposits in southern Arizona. Economic Geology, 78(4), 591–604. https://doi.org/10.2113/gsecongeo.78.4.591.

Amer R., Kusky T. & Ghulam A., 2010. Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences, 56(2–3), 75–82. https://doi.org/10.1016/j.jafrearsci.2009.06.004.

Anbazhagan S., Biswal T.K., Roy T. & Kusuma K.N., 2006. Remote sensing study of granulitic terrain in parts of Gujarat and Rajasthan. Journal of the Indian Society of Remote Sensing, 34(4), 331–341. https://doi.org/10.1007/BF02990918.

Anbazhagan S., Sainaba N.K. & Arivazhagan S., 2012. Remote sensing study of Sittampundi anorthosite complex, India. Jour-nal of the Indian Society of Remote Sensing, 40(1), 145–153. https://doi.org/10.1007/s12524-011-0126-y.

Beauchemin M. & Fung K.B., 2001. On statistical band selection for image visualization. Photogrammetric Engineering and Remote Sensing, 67(5), 571–574.

Bernstein L.S., Jin X., Gregor B. & Adler-Golden S.M., 2012. Quick atmospheric correction code: algorithm description and recent upgrades. Optical Engineering, 51(11), 111719. https://doi.org/10.1117/1.OE.51.11.111719.

Bhan S., Bhattacharya A., Guha P. & Ravindran K., 1991. IRS-1A applications in geology and mineral resources. Current Sci-ence, 61(3–4), 247–251.

Bhattacharya S., 2010. Review: the charnockite problem, a twenty-first century perspective. Natural Science, 2(1), 402–408. https://doi.org/10.4236/ns.2010.24049.

Bhattacharya S., Majumdar T.J., Rajawat A.S., Panigrahy M.K. & Das P.R., 2012. Utilization of Hyperion data over Dongargarh, India, for mapping altered/weathered and clay minerals along with field spectral measurements. International Journal of Remote Sensing, 33(17), 5438–5450. https://doi.org/10.1080/01431161.2012.661094.

Buchanan M.D., 1979. Effective utilization of colour in multidimensional data presentations. [in:] Parsons J.R. (ed.), Advances in Display Technology, Proceedings of SPIE, 0199, Society of Photo-Optical Instrumentation Engineers, 9–18. https://doi.org/10.1117/12.958037.

Chavez P.S. Jr., Berlin G.L. & Sowers L.B., 1982. Statistical method for selecting Landsat MSS ratios. Journal of Applied Pho-tographic Engineering, 8(1), 23–30.

Chavez P.S., Guptill S.C. & Bowell J.A., 1984. Image processing techniques for thematic mapper data. [in] Technical Paper of the Annual Meeting ASP ACSM Convention. Volume 2, ACSM-ASPRS Technical Papers, American Society of Photogram-metry, Washington, 728–742.

Chavez P., Sides S.C. & Anderson J.A., 1991. Comparison of three different methods to merge multiresolution and multispec-tral data: Landsat TM and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing, 57(3), 295–303.

Chellamuthu Ranganathan P. & Siddan A., 2021. Application of spectral signature to analyze quality of magnesite ore mineral deposits and altered rocks of Salem, India. Arabian Journal of Geosciences, 14(7), 651. https://doi.org/10.1007/s12517-021-06963-1.

Ciampalini A., Garfagnoli F., Antonielli B., Moretti S. & Righini G., 2013. Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal of Geosciences, 6(11), 4529–4546. https://doi.org/10.1007/s12517-012-0725-0.

Clark R.N., 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. [in:] Rencz A.N. (ed.), Remote Sensing for the Earth Sciences: Manual of Remote Sensing, Volume 3, 3rd ed., John Wiley and Sons, New York, 3–58.

Crane R., 1971. Propagation phenomena affecting satellite communication systems operating in the centimeter and millimeter wavelength bands. Proceedings of the IEEE, 59(2), 173–188. https://doi.org/10.1109/PROC.1971.8123.

Crósta A.P. & Moore J., 1990. Ehancement of LANDSAT Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State, Brazil: A prospecting case history in Greenstone belt terrain. [in:] Proceedings of the Seventh Thematic Con-ference on Remote Sensing for Exploration Geology: Methods,Integration, Solutions: October 2–6, 1989, Calgary, Alberta, Canada. Volume II, Environmental Research Institute of Michigan, 1173–1187.

Drury S., 1990. SPOT image data as an aid to structural mapping in the southern Aravalli Hills of Rajasthan, India. Geological Magazine, 127(3), 195–207. https://doi.org/10.1017/S0016756800014485.

Evans D., 1988. Multisensor classification of sedimentary rocks. Remote Sensing of Environment, 25(2), 129–144. https://doi.org/10.1016/0034-4257(88)90097-1.

Gad S. & Kusky T., 2007. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11(3), 326–335. https://doi.org/10.1016/j.gr.2006.02.010.

Gahlan H. & Ghrefat H., 2018. Detection of Gossan Zones in Arid Regions using Landsat 8 OLI data: Implication for mineral exploration in the Eastern Arabian Shield, Saudi Arabia. Natural Resources Research, 27(1), 109–124. https://doi.org/10.1007/s11053-017-9341-8.

Glikson A. & Creasey J., 1995. Application of Landsat-5 TM imagery to mapping of the Giles Complex and associated granu-lites, Tomkinson Ranges, western Musgrave Block, central Australia. AGSO Journal of Australian Geology and Geophysics, 16(1), 173.

Goetz A.F. & Rowan L.C., 1981. Geologic remote sensing. Science, 211(4484), 781–791. https://doi.org/10.1126/science.211.4484.781.

Gopalakrishnan R. & Shanmugam P., 1995. Reconnaissance Survey for Platinum Group of Elements in Ultrabasic-Ultramafic rocks of Solavanur-Mallanayakkanpalaiyam-Karappadi areas, Periyar District. GSI Progress Report for the FS 1993-94.

Gupta R.P., 2017. Remote Sensing Geology. Springer, Berlin, Heidelberg.

Holben B. & Justice C., 1981. An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data. International Journal of Remote Sensing, 2(2), 115–133. https://doi.org/10.1080/01431168108948349.

Huang C., Song K., Kim S., Townshend J.R., Davis P., Masek J.G. & Goward S.N., 2008. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sensing of Environment, 112(3), 970–985. https://doi.org/10.1016/j.rse.2007.07.023.

Jensen J.R., 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice Hall, Hoboken.

Kamel M., Abdeen M.M., Youssef M.M., Orabi A.M. & Abdelbaky E., 2022. Utilization of Landsat-8 (OLI) image data for geological mapping of the neo-Proterozoic basement rocks in the Central Eastern Desert of Egypt. Journal of the Indian So-ciety of Remote Sensing, 50(3), 469–492. https://doi.org/10.1007/s12524-021-01465-9.

Kaufmann H., 1988. Mineral exploration along the Aqaba-Levant Structure by use of TM-data: Concepts, processing and re-sults. International Journal of Remote Sensing, 9(10–11), 1639–1658. https://doi.org/10.1080/01431168808954966.

Krishnamurthy J., 1997. The evaluation of digitally enhanced Indian Remote Sensing Satellite (IRS) data for lithological and structural mapping. International Journal of Remote Sensing, 18(16), 3409–3437. https://doi.org/10.1080/014311697216955.

Kumar C., Shetty A., Raval S., Sharma R. & Ray P.C., 2015. Lithological discrimination and mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India. Procedia Earth and Planetary Science, 11, 180–188. https://doi.org/10.1016/j.proeps.2015.06.022.

Kusuma K.N., Ramakrishnan D. & Pandalai H.S., 2012. Spectral pathways for effective delineation of high-grade bauxites: A case study from the Savitri River Basin, Maharashtra, India, using EO-1 Hyperion data. International Journal of Remote Sensing, 33(22), 7273–7290. https://doi.org/10.1080/01431161.2012.700131.

Loughlin W., 1991. Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.

Maheswaran S.U., Anbazhagan S., Tamilarasan K., Kasilingam C. & Chinnamuthu M., 2019. Lithology and structural mapping of Kadavur Basin, Tamil Nadu, India, using IRS P6 LISS III satellite data. Journal of the Indian Society of Remote Sensing, 47(8), 1275–1286. https://doi.org/10.1007/s12524-019-00989-5.

Mwaniki M.W., Moeller M.S. & Schellmann G., 2015. A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualizing lineaments: A case study of central region Kenya. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XL-7/W3(7), 897–903. https://doi.org/10.5194/isprsarchives-XL-7-W3-897-2015.

Othman A.A. & Gloaguen R., 2014. Improving lithological mapping by SVM classification of spectral and morphological fea-tures: The discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sensing, 6(8), 6867–6896. https://doi.org/10.3390/rs6086867.

Pal M. & Mather P.M., 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011. https://doi.org/10.1080/01431160512331314083.

Pour A.B., Park Y., Park T.-Y.S., Hong J.K., Hashim M., Woo J. & Ayoobi I., 2018. Regional geology mapping using satel-lite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Science, 16, 23–46. https://doi.org/10.1016/j.polar.2018.02.004.

Prabhakar J., Boopathi D. & Kumar S.B.V., 2012. Investigation for Platinum Group of elements by scout drilling in Solavanur and Karappadi blocks and detailed mapping in Mallanayakkanpalaiyam block, Mettuppalaiyam mafic-ultramafic complex, Tamil Nadu. Geological Survey of India Report.

Prinz T., 1996. Multispectral remote sensing of the Gosses Bluff impact crater, central Australia (NT) by using Landsat-TM and ERS-1 data. ISPRS Journal of Photogrammetry and Remote Sensing, 51(3), 137–149. https://doi.org/10.1016/0924-2716(95)00007-0.

Rao Y.J.B., Chetty T.R.K., Janardhan A.S. & Gopalan K., 1996. Sm-Nd and Rb-Sr ages and P-T history of the Archean Sittam-pundi and Bhavani layered meta-anorthosite complexes in Cauvery shear zone, South India: Evidence for Neoproterozoic reworking of archean crust. Contributions to Mineralogy and Petrology, 125(2–3), 237–250. https://doi.org/10.1007/s004100050219.

Roy D.P., Wulder M.A., Loveland T.R., Woodcock C.E., Allen R.G., Anderson M.C., Helder D. et al., 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001.

Ruiliang P., 2017. Hyperspectral Remote Sensing: Fundamentals and Practices. CRC Press, Boca Raton.

Ruiz-Armenta J. & Prol-Ledesma R., 1998. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico. International Journal of Remote Sensing, 19(10), 1981–2000. https://doi.org/10.1080/014311698215108.

Sabins F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14(3–4), 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4.

Satterwhite M., 1984. Discriminating vegetation and soils using Landsat MSS and Thematic Mapper bands and band ratios. Army Engineer Topographic Labs Fort, Belvoir.

Satyanarayanan M., Balaram V., Sylvester P., Rao D.S., Charan S., Shaffer M., Dar A.M. & Anbarasu K., 2011. Geochemistry of late-archean Bhavani (Mettupalayam) mafic/ultramafic complex, Southern India: Implications for platinum group element mineralization. Journal of Applied Geochemistry, 13(1), 1–14.

Scheunders P., Tuia, D. & Moser G., 2018. Contributions of machine learning to remote sensing data analysis. [in:] Shunlin L. (ed.), Comprehensive Remote Sensing. Volume 2: Data Processing and Analysis Methodology, Elsevier, 199–243, https://doi.org/10.1016/B978-0-12-409548-9.10343-4.

Shebl A., Abdellatif M., Hissen M., Abdelaziz M.I. & Csámer Á., 2021. Lithological mapping enhancement by integrating Sen-tinel 2 and gamma-ray data utilizing support vector machine: A case study from Egypt. International Journal of Applied Earth Observation and Geoinformation, 105, 102619. https://doi.org/10.1016/j.jag.2021.102619.

Su L. & Huang Y., 2009. Support Vector Machine (SVM) classification: Comparison of linkage techniques using a clustering-based method for training data selection. GIScience & Remote Sensing, 46(4), 411–423. https://doi.org/10.2747/1548-1603.46.4.411.

Sultan M., Arvidson R.E., Sturchio N.C. & Guinness E.A., 1987. Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt. Geological Society of America Bulletin, 99(6), 748–762. https://doi.org/10.1130/0016-7606(1987)99<748:LMIARW>2.0.CO;2.

Tamilarasan K., Anbazhagan S., Maheswaran S., Ranjithkumar S., Kusuma K. & Rajesh V., 2022. Reflectance spectra and AVIRIS-NG airborne hyperspectral data analysis for mapping ultramafic rocks in igneous terrain. Journal of Spectral Imag-ing, 11(1), a9. https://doi.org/10.1255/jsi.2022.a9.

Vapnik V., 1995. The Nature of Statistical Learning Theory. Springer Science & Business Media.

Yesou H., Besnus Y. & Rolet J., 1993. Extraction of spectral information from Landsat TM data and merger with SPOT pan-chromatic imagery – a contribution to the study of geological structures. ISPRS Journal of Photogrammetry and Remote Sensing, 48(5), 23–36. https://doi.org/10.1016/0924-2716(93)90069-Y.

Yu L., Porwal A., Holden E.-J. & Dentith M.C., 2012. Towards automatic lithological classification from remote sensing data using support vector machines. Computers & Geosciences, 45, 229–239. https://doi.org/10.1016/j.cageo.2011.11.019.

Zhang X., Pamer M. & Duke N., 2007. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, 62(4), 271–282. https://doi.org/10.1016/j.isprsjprs.2007.04.004.

Downloads

Published

2023-09-12

Issue

Section

Articles

How to Cite

Tamilarasan, K., Anbazhagan, S., & Ranjithkumar, S. (2023). Rock type discrimination using Landsat-8 OLI satellite data in mafic-ultramafic terrain. Geology, Geophysics and Environment, 49(3), 281-298. https://doi.org/10.7494/geol.2023.49.3.281