Gases in the near-surface zone of the reclaimed Barycz municipal waste landfill – a case study from southern Poland




landfill, emission, surface distribution, methane, carbon dioxide, biogas, hydrocarbons


The formation of biogas at municipal landfills and the significant emission of greenhouse gases from these facilities into the environment were the main reasons for analyzing the molecular composition of soil gas in the near-surface zone at the reclaimed part of the Barycz municipal waste landfill. The relations between the studied components (methane, carbon dioxide, light hydrocarbons and non-hydrocarbon components) and impact of the magnitude of recorded concentrations of methane and carbon dioxide on their emission to the atmosphere were evaluated. Two profiles were determined, along which 41 soil and landfill gas samples were taken at 20-meter intervals. At the same time, emissions were measured at each sampling point using a static chamber with a portable fluxometer. Chromatographic analysis showed that the concentrations of methane and carbon dioxide fluctuated in the ranges: 2.1 ppm – 76 vol% and 0.04 ppm – 11 vol%, respectively. Relatively high concentrations of these gases were determined at many of the measurement points, and this was particularly evident at the A-A’ profile, indicating stronger biochemical processes in this part of the landfill, or lateral migration of methane from the neighbouring stage II of the landfill, where biogas extraction is currently taking place. In addition, significant correlations between methane, carbon dioxide, and oxygen were demonstrated, indicating ongoing methane fermentation processes. Based on the study, it can be concluded that the southern part of the A-A’ profile is an optimal place to locate a degassing well from which biogas production could be used. However, the research is only preliminary and, it will be necessary to extend the soil gas tests before the final decision on the location of the well is made. Moreover, it has been shown that the concentrations of methane and carbon dioxide measured at points located outside the landfill were low. This means that generated biogas probably does not migrate beyond the boundaries of reclaimed waste landfill, but this will need to be confirmed by performing additional soil gas tests inside and outside the landfill area. The preliminary assessment of the effectiveness of the reclamation carried out was confirmed by the negligible values of the measured methane and carbon dioxide emissions on the surface.


Download data is not yet available.


Alrbai M., Abubaker A., Ahmad A., Al-Dahidi S., Ayadi O., Hjouj D. & Al-Ghussain L., 2022. Optimization of energy production from biogas fuel in a closed landfill using artificial neutral networks: A case study of Al Ghabawi Landfill, Jordan. Waste Management, 150, 218–226.

Augenstein D. & Pacey J., 1991. Modeling landfill methane generation. [in:] Sardinia 91: Third International Landfill Symposium: 14–18 October 1991, S. Margherita Di Pula (Cagliari), Sardinia, Italy: Proceedings, CISA, Environmental Sanitary Engineering Centre, Cagliari, 115–148.

Aydi A., 2012. Energy recovery from a municipal solid waste (MSW) landfill gas: A Tunisian case study. Hydrology Current Research, 3(4), 1000137.

Barros R., Filho G. & Silva T., 2014. The electric energy potential of landfill biogas in Brazil. Energy Policy, 65, 150–164.

Barlaz M., Green R., Chanton J., Goldsmith C. & Hater G., 2004. Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environmental Science Technology, 38(18), 4891–4899.

Belay N. & Daniels L., 1987. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Applied and Environmental Microbiology, 53(7), 1604–1610.

Biernat K., Dziołak P. & Samson-Bręk I., 2011. Technologie energetycznego wykorzystania odpadów. Studia Ecologiae et Bioethicae, 9(2), 103–129.

Bonham L., 1980. Migration of hydrocrbons in compacting basins. AAPG Bulletin, 64(4), 549–567.

Bove R. & Lunghi P., 2006. Electric power generation from LFG using traditional and innovative technologies. Energy Conversion Management, 47(11–12), 1391–1401.

Campbell D., 2020. Explosion and fire hazards associated with landfill gas. [in:] Christensen T., Cossu R. & Stegmann R. (eds), Landfilling of Waste: Biogas, Taylor & Francis Group, London – New York, 133–142.

Capaccioni B., Caramiello C., Tatàno F. & Viscione A., 2011. Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill. Waste Management, 31(5), 956–965.

Ciuła J., Kozik V., Generowicz A., Gaska K., Bak A., Paździor M. & Barbusiński K., 2020. Emission and neutralization of methane from a municipal landfill – Parametric Analysis. Energies, 13(23), 6254.

Collier S.M., Ruark M.D., Oates L.G., Jokela W.E. & Dell C.J., 2014. Measurement of greenhouse gas flux from agricultural soils using static chambers. Journal of Visualized Experiments, 90, e52110.

Cossu R., Morello L. & Stegmann R., 2018. Biochemical processes in landfill. [in:] Cossu R. & Stegmann R. (eds.), Solid Waste Landfilling: Concepts, Processes, Technologies, Elsevier, Amsterdam, 91–115.

Czekała W., Szewczyk P., Kwiatkowska A., Kozłowski K. & Janczak D., 2016. Produkcja biogazu z odpadów komunalnych [Biogas production from municipal waste]. Technika Rolnicza Ogrodnicza Leśna, 5, 21–25.

Czepiel M.P., Mosher B., Crill P. & Harriss R.C., 1996. Quantifying the effect of oxidation on landfill methane emissions. Journal of Geophysical Research: Atmospheres, 101(D11), 16721–16729.

Dave P., Sahu L., Tripathi N., Bajaj S., Yadav R. & Patel K., 2020. Emissions of non-methane volatile organic compounds from a landfill site in a major city of India: impact on local air quality. Heliyon, 6(7), e04537.

Delgado M., López A., Esteban A.L. & Lobo A., 2022. Some findings on the spatial and temporal distribution of methane emissions in landfills. Journal of Cleaner Production, 362, 132334.

d’Obyrn K., Klojzy-Karczmarczyk B. & Mazurek J., 2014. An analysis of the impact of a liquidated salt mine and an municipal landfill on the quality of the Malinówka stream water in the former Barycz mining area. Mineral Resources Management, 22, 4, 113–132.

d’Obyrn K. & Wójcik W., 2015. Optymalne rozwiązania rekultywacji terenów na wybranych przykładach [Optimal solutions of area reclamation on the selected examples]. Acta Universitatis Nicolai Copernici. Ekonomia, 46(2), 225–237.

Dudek J., 2013. Wpływ odpadów biodegradowalnych na potencjał energetyczny składowiska [The impact of biodegradable wastes on the power generation potential of waste dumps]. Nafta-Gaz, 69(12), 915–922.

Dudek J., Klimek P. & Flak K., 2011. Optymalizacja procesu wytwarzania energii odnawialnej na składowisku odpadów komunalnych „Barycz” w Krakowie – modernizacja stacji przesyłowej biogazu [Optimization of the renewable energy generation process at the “Barycz” municipal waste landfill in Krakow – modernization of the biogas transmission station]. Nafta-Gaz, 67(8) 568–571.

Dzieniewicz M. & Sechman H., 2002. Zestaw do ręcznego pobierania próbek gazowych z warstw przypowierzchniowych [Method of and set for manually sampling gas from superficial layers of soil]. Patent PL 184080 B1, Urząd Patentowy Rzeczypospolitej Polskiej.

Dzieniewicz M., Kuśmierek J. & Rusta T., 1985. Optimization of soil-gas field collection techniques based on experimental studies. Association Petroleum Geochemical Explorationists Bulletin, 1, 43–56.

EP and CEU (European Parliament and the Council of the European Union), 2018. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste. Official Journal of the European Union L 150/100, 14.6.2018.

Fatta D., Papadopoulos A. & Loizidou M., 1999. A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health, 21(2), 175–190.

Gandolla M., Acaia C. & Fischer C., 1997. Landfill gas migration in the subsoil: experiences of control and remediation. [in:] Uhre L. (ed.), International Directory of Solid Waste Management, James & James Science Publishers, London, 237–245.

García-Depraect O., Lebrero R., Rodriguez-Vega S., Bordel S., Santos-Beneit F., Martínez-Mendoza L.J., Börner R.A. et al., 2022. Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect. Bioresource Technology, 344 (Part B), 126265.

Georgaki I., Soupios P., Sakkas N., Ververidids F., Trantas E., Vallianatos F. & Manios T., 2008. Evaluating the use of electrical resistivity imaging technique for improving CH4 and CO2 emission rate estimations in landfills. Science of The Total Environment, 389(2–3), 522–531.

Grzesik K., 2006. Wykorzystanie biogazu jako źródła energii [The use of biogas as a energy source]. [in:] Śliwka M. & Jakubiak M. (red.), Zielone prądy w edukacji: II edycja, Polskie Towarzystwo Inżynierii Ekologicznej. Oddział Krakowski, Agencja Wydawniczo-Poligraficzna ART-TEKST, Kraków, 21–30.

Haro K., Ouarma I., Nana B., Bere A., Tubreoumya G.C., Kam S.Z., Laville P. et al., 2019. Assessment of CH4 and CO2 surface emissions from Polesgo’s landfill (Ouagadougou, Burkina Faso) based on static chamber method. Advances in Climate Change Research, 10(3), 181–191.

Huang D., Du Y., Xu Q. & Ko J.H., 2022. Quantification and control of gaseous emissions from solid waste landfill surfaces. Journal of Environmental Management, 302(A), 114001.

Ishigaki T., Yamada M., Nagamori M., Ono Y. & Inoue Y., 2005. Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. Environmental Geology, 48(7), 845–853.

Klojzy-Karczmarczyk B., Makoudi S., Mazurek J. & Staszczak J., 2016: Składowanie i wpływ na środowisko składowiska odpadów komunalnych Barycz w aspekcie zmian uwarunkowań prawnych w zakresie gospodarki odpadami [The storage and the impact for environment of Barycz municipal landfill in terms of changes in the waste management law]. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 92, 195–209.

Klusman R.W., Leopold M.E. & LeRoy M.P., 2000. Seasonal variation in methane fluxes from sedimentary basins to the atmosphere: Results from chamber measurements and modeling of transport from deep sources. Journal of Geophysical Research: Atmospheres, 105(D20), 24661–24670.

Korus A., Kotarba M. J., Dzieniewicz M. & Sechman H., 2002. Evaluation of methane and carbon dioxide flux from Upper Carboniferous coal-bearing strata to near-surface zone in the Walbrzych Coal District. [in:] Kotarba M.J. (ed.), Gas hazard in the near-surface zone of the Walbrzych Coal District caused by coal mine closure: geological and geochemical controls, Society of Research on Environmental Changes GEOSFERA, Kraków, 175–188.

Korus A., Kotarba M., Dzieniewicz M. & Sechman H., 2003. Sposób pomiaru strumienia gazów złożowych emitowanych z przypowierzchniowych warstw gruntu do powietrza atmosferycznego [Method for measuring the flow of complex gases emitted by surface soil layers to the atmospheric air]. Patent PL 206259 B1, Urząd Patentowy Rzeczypospolitej Polskiej.

Kuczyńska I. & Flak K., 2013. Regionalna Instalacja Przetwarzania Odpadów Komunalnych (RIPOK) w Krakowie. [in:] Seminarium „Zarządzanie gospodarką odpadami w gminie – gdzie jesteśmy”, Płock, 6–7 listopada 2013, 142–150.

Kultys H. & Flak K., 2004. Doświadczenia wynikające z eksploatacji składowiska Barycz w Krakowie. [in:] Polsko niemieckie seminarium pt. „Nowoczesna gospodarka odpadami komunalnymi”, IETU Katowice, 23–24 March 2004 r.

Leventhal J.S., 1992. Modern mobile methane measurement in marshes. Open-File Report, 92-445, United State Geological Survey.

Majumdar D., Ray S., Chakraborty S., Rao P.S., Akolkar A.B., Chowdhury M. & Srivastava A., 2014. Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 64(7), 834–845.

Malovanyy M., Korbut M., Davydova I. & Tymchuk I., 2021. Monitoring of the influence of landfills on the atmospheric air using bioindication methods on the example of the Zhytomyr landfill, Ukraine. Journal of Ecological Engineering, 22(6), 36–49.

Manna L., Zanetti M.C. & Genon G., 1999. Modelling biogas production at landfill site. Resources, Conservation and Recycling, 26(1), 1–14.

Mbachu A.E., Chukwura E.I. & Mbachu N.A., 2020. Role of microorganisms in the degradation of organic pollutants: a review. Energy and Environmental Engineering, 7(1), 1–11.

Mor S., Ravindra K., De Visscher A., Dahiya R.P. & Chandra A., 2006. Municipal solid waste characterization and its assessment for potential methane generation: A case study. Science of the Total Environment, 371(1–3), 1–10.

Niemczewska J., 2013. Metodyka pomiarów emisji gazów ze składowisk odpadów komunalnych [The methodology for the measurement of greenhouse gas emissions from municipal landfills]. Nafta-Gaz, 69(8), 613–618.

Pazoki M., Delarestaghi R.M., Rezvanian M.R., Ghasemzade R. & Dalaei P., 2015. Gas production potential in the landfill of Tehran by landfill methane outreach program. Jundishapur Journal of Health Sciences, 7(4), e29679.

Pehme K.-M., Orupõld K., Kuusemets V., Tamm O., Jani Y., Tamm T. & Kriipsalu M., 2020. Field study on the efficiency of a methane degradation layer composed of fine fraction soil from landfill mining. Sustainability, 12(15), 6209.

Porowska D., 2021. Review of research methods for assessing the activity of a municipal landfill based on the landfill gas analysis. Periodica Polytechnica Chemical Engineering, 65(2), 167–176.

Purmessur B. & Surroop D., 2019. Power generation using landfill gas generated from new cell at the existing landfill site. Journal of Environmental Chemical Engineering, 7(3), 103060.

Qdais H.A., Abdulla F. & Qrenawi L., 2010. Solid waste landfills as a source of green energy: Case study of Al Akeeder landfill. Jordan Journal of Mechanical and Industrial Engineering, 4(1), 69–74.

Rajchel B., 2017. Badania monitoringowe gazów wysypiskowych na byłym składowisku odpadów w Krośnie [Monitoring studies of landfill gases in a former landfill in Krosno]. [in:] Krupa J. & Szpara K. (red.), Zrównoważona gospodarka zasobami przyrodniczymi i kulturowymi na Pogórzu Dynowskim determinantą rozwoju turystyki [Sustainable management of natural and cultural resources in the Dynowskie Foothills as a determinant of tourism development], Związek Gmin Turystycznych Pogórza Dynowskiego, Dynów, 73–89.

Renou S., Givaudan J.G., Poulain S., Dirassouyan F. & Moulin P., 2008. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.

Rodrigo-Ilarri J. & Rodrigo-Clavero M.E., 2020. Mathematical modelling of the biogas production in MSW landfills. Impact of the implementation of organic matter and food waste selective collection systems. Atmosphere, 11(12), 1306.

Rozporządzenie Ministra Środowiska z dnia 30 kwietnia 2013 r. w sprawie składowisk odpadów [Regulation of the Minister of the Environment of 30 April 2013 on landfills]. Dz.U. 2013 poz. 523.

Scheutz Ch., Kjeldsen P., Bogner J.E., De Visscher A., Gebert J., Hilger H.A., Huber-Humer M. & Spokas K., 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management Research, 27(5), 409–455.

Sechman H., 2006. Głębokość poboru próbki gazu podglebowego w powierzchniowych badaniach geochemicznych: próba optymalizacji [Sampling of soil gas in surface geochemical surveys: an attempt of depth optimization]. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 32(2), 117–139.

Sechman H., 2022. Detailed analysis of gaseous components in soil gases around petroleum wells – an effective tool for evaluation of their integrity. Applied Geochemistry, 142, 105346.

Shen S., Chen Y., Zhan L., Xie H., Bouazza A., He F. & Zuo X., 2018. Methane hotspot localization and visualization at a large-scale Xi’an landfill in China: effective tool for landfill gas management. Journal of Environmental Management, 225, 232–241.

Shin H., Park J., Kim H. & Shin E., 2005. Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model. Energy Policy, 33(10), 1261–1270.

Themelis N.J. & Ulloa P.A., 2007. Methane generation in landfills. Renewable Energy, 32(7), 1243–1257.

Vaverková M., 2019. Landfill impacts on the environment. Geosciences, 9(10), 431.

Villanueva-Estrada R.E., Rocha-Millera R., Arvizu-Fernández J.L. & Castro González A., 2019. Energy production from biogas in a closed landfill: A case study of Prados dela Montaña, Mexico City. Sustainable Energy Technologies and Assessments, 31, 236–244.

Vincevica-Gaile Z., Burlakovs J., Fonteina-Kazeka M., Wdowin M., Hanc E., Rudovica V., Krievans M. et al., 2023. Case study-based integrated assessment of formerwaste disposal sites transformed to green space in terms of ecosystem services and land assets recovery. Sustainability, 15(4), 3256.

West System, 2012. Portable diffuse flux meter with LI-COR CO2 detector: Handbook: Release 8.2. September 2012.

Yan W., Huang S. & Stenby E.H., 2011. Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density. International Journal of Greenhouse Gas Control, 5(6), 1460–1477.

Yaqout A., 2003. Assessment and analysis of industrial waste and sludge disposal at unlined landfill sites in arid climate. Waste Management, 23(9), 817–824.

Zacharof A. & Butler A., 2004. Stochastic modeling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis. Waste Management, 24(5), 453–462.




How to Cite

Kopera, P. A., Sechman, H., & Twaróg, A. (2023). Gases in the near-surface zone of the reclaimed Barycz municipal waste landfill – a case study from southern Poland. Geology, Geophysics and Environment, 49(2), 101–121.