Diurnal seismic ambient noise and seismic station performance characterization in the Bengal Basin, Bangladesh

Authors

DOI:

https://doi.org/10.7494/geol.2023.49.3.209

Keywords:

seismic ambient noise, power spectral density, noise energy, noise sources, seismic station, Bengal Basin

Abstract

Seismic ambient noise (SAN) energy can potentially blur regional and teleseismic arrivals as well as various microearthquakes at specific frequencies. Therefore, quantification of the SAN energy level in a region is required to optimize seismic station distribution for seismological investigations. Moreover, evaluation of station performance and noise source is possible from observation of SAN energy levels. The SAN energy distribution from seismic stations in the Bengal Basin (BB), Bangladesh has not yet been estimated. At the same time, this tectonically active and complex region is less studied using seismic methods. This study aims to quantify SAN energy and characterize its diurnal variation along with evaluating station performance at 11 seismic stations, which were temporarily installed in the deeper portion of the BB. Herein, the daily SAN energy level was determined within the period range of 0.02–30 s by estimating the power spectral density (PSD) of seismic data for 7 continuous days. SAN energy and its variation over time were observed using the probability density functions (PDFs) of PSDs and spectrograms, respectively. The sources of SAN energies at different period bands were also investigated by comparing the PSDs with daily variations in human activities, nearby noise sources, local meteorological factors (i.e., air temperature and precipitation), and sea level height. The insights from this study could be useful for the future deployment of seismic networks as well as seismological studies in the BB.

Downloads

Download data is not yet available.

References

Alam M., 1989. Geology and depositional history of Cenozoic sediments of the Bengal Basin of Bangladesh. Palaeogeography, Palaeoclimatology, Palaeoecology, 69(C), 125–139. https://doi.org/10.1016/0031-0182(89)90159-4.

Alam M., Alam M.M., Curray J.R., Chowdhury M.L.R. & Gani M.R., 2003. An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sedimentary Geology, 155(3–4), 179–208. https://doi.org/10.1016/S0037-0738(02)00180-X.

Ardhuin F., Gualtieri L. & Stutzmann E., 2015. How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s. Geophysical Research Letters, 42(3), 765–772. https://doi.org/10.1002/2014GL062782.

Baker M.G., Aster R.C., Anthony R.E., Chaput J., Wiens D.A., Nyblade A., Bromirski P.D. et al. 2019. Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf. Journal of Glaciology, 65(254), 912–925. https://doi.org/10.1017/jog.2019.64.

Beyreuther M., Barsch R., Krischer L., Megies T., Behr Y., Wassermann J., 2010. ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/GSSRL.81.3.530.

Bilham R., 2004. Earthquakes in India and the Himalaya: Tectonics, geodesy and history. Annales Geophysicae, 47(2–3), 839–858. https://doi.org/10.4401/ag-3338.

Bonnefoy-Claudet S., Cotton F. & Bard P.-Y., 2006. The nature of noise wavefield and its applications for site effects studies. Earth-Science Reviews, 79(3–4), 205–227. https://doi.org/10.1016/j.earscirev.2006.07.004.

Bürgi P., Hubbard J., Akhter S.H. & Peterson D.E., 2021. Geometry of the Décollement Below Eastern Bangladesh and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 126(8), e2020JB021519. https://doi.org/10.1029/2020JB021519.

Burtin A., Bollinger L., Vergne J., Cattin R. & Nábělek J.L., 2008. Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. Journal of Geophysical Research: Solid Earth, 113(B5), 5301. https://doi.org/10.1029/2007JB005034.

Campillo M. & Paul A., 2003. Long range correlations in the diffuse seismic coda. Science, 299(5606), 547–549. https://doi.org/10.1126/SCIENCE.1078551.

Colombero C., Baillet L., Comina C., Jongmans D., Larose E., Valentin J. & Vinciguerra S., 2018. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff. Geophysical Journal International, 213(3), 1876–1897. https://doi.org/10.1093/GJI/GGY090.

Demuth A., Ottemöller L. & Keers H., 2016. Ambient noise levels and detection threshold in Norway. Journal of Seismology, 20(3), 889–904. https://doi.org/10.1007/S10950-016-9566-8/FIGURES/10.

Farazi A.H., Ferdous N. & Kamal A.S.M.M., 2018. LPI based earthquake induced soil liquefaction susceptibility assessment at Probashi Palli Abasan Project Area, Tongi, Gazipur, Bangladesh. Journal of Scientific Research, 10(2), 105–116. https://doi.org/10.3329/jsr.v10i2.34225.

Farazi A.H., Hossain M.S., Ito Y., Piña-Flores J., Kamal A.S.M.M. & Rahman M.Z., 2023a. Shear wave velocity estimation in the Bengal Basin, Bangladesh by HVSR analysis: implications for engineering bedrock depth. Journal of Applied Geophysics, 211, 104967. https://doi.org/10.1016/J.JAPPGEO.2023.104967.

Farazi A.H., Ito Y., Soliman E., Garcia M., Lontsi A.M., José Sánchez-Sesma F., Jaramillo A. et al., 2023b. Shear wave velocity structure at the Fukushima forearc region based on H/V analysis of ambient noise recordings by ocean bottom seismometers. Geophysical Journal International, 233(3), 1801–1820. https://doi.org/10.1093/GJI/GGAD028.

FDSN, 2008. BI: University of Dhaka Seismographic Network. International Federation of Digital Seismograph Networks. https://www.fdsn.org/networks/detail/BI/ [access: 28.10.2021].

FDSN, 2011. Z6 (2011–2017): PIRE: Life on a tectonically active delta in Bangladesh. https://www.fdsn.org/networks/detail/Z6_2011/ [access: 28.10.2021].

Grecu B., Neagoe C., Tataru D., Borleanu F. & Zaharia B., 2018. Analysis of seismic noise in the Romanian-Bulgarian cross-border region. Journal of Seismology, 22(5), 1275–1292. https://doi.org/10.1007/s10950-018-9767-4.

Hasselmann K., 1963. A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1(2), 177–210. https://doi.org/10.1029/RG001I002P00177.

Hossain M.S., Kamal A.S.M.M., Rahman M.Z., Farazi A.H., Mondal D.R., Mahmud T., Ferdous N., 2020. Assessment of soil liquefaction potential: a case study for Moulvibazar town, Sylhet, Bangladesh. SN Applied Sciences, 2, 777. https://doi.org/10.1007/s42452-020-2582-x.

Johnson S.Y. & Alam A.M.N., 1991. Sedimentation and tectonics of the Sylhet trough, Bangladesh. GSA Bulletin, 103(11), 1513–1527. https://doi.org/10.1130/0016-7606(1991)103<1513:SATOTS>2.3.CO;2.

Khan A.A. & Chouhan R.K.S., 1996. The crustal dynamics and the tectonic trends in the Bengal Basin. Journal of Geodynamics, 22(3–4), 267–286. https://doi.org/10.1016/0264-3707(96)00022-1

Lecocq T., Hicks S.P., Van Noten K., van Wijk K., Koelemeijer P., De Plaen R.S.M., Massin F. et al., 2020. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 1338–1343. https://doi.org/10.1126/science.abd2438.

Longuet-Higgins M.S., 1950. A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(857), 1–35. https://doi.org/10.1098/rsta.1950.0012.

Mahmud M.I., Mia A.J., Islam M.A., Peas M.H., Farazi A.H. & Akhter S.H., 2020. Assessing bank dynamics of the Lower Meghna River in Bangladesh: an integrated GIS-DSAS approach. Arabian Journal of Geosciences, 13(14), 602. https://doi.org/10.1007/s12517-020-05514-4.

Marzorati S. & Bindi D., 2006. Ambient noise levels in north central Italy. Geochemistry, Geophysics, Geosystems, 7(9). https://doi.org/10.1029/2006GC001256.

McNamara D.E. & Buland R.P., 2004. Ambiente noise levels in the continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001.

Molnar S., Cassidy J.F., Castellaro S., Cornou C., Crow H., Hunter J.A., Matsushima S. et al., 2018. Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) analysis for site characterization: State of the art. Surveys in Geophysics, 39(4), 613–631. https://doi.org/10.1007/s10712-018-9464-4.

Nakata N., Gualtieri L. & Fichtner A. (eds.), 2019. Seismic Ambient Noise. Cambridge University Press, Cambridge.

Ni J.F., Guzman-Speziale M., Bevis M., Holt W.E., Wallace T.C. & Seager W.R., 1989. Accretionary tectonics of Burma and the three-dimensional geometry of the Burma subduction zone. Geology, 17(1), 68. https://doi.org/10.1130/0091-7613(1989)017<0068:ATOBAT>2.3.CO;2.

Nishida K., 2017. Ambient seismic wave field. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 93(7), 423–448. https://doi.org/10.2183/pjab.93.026.

Oakley D.O.S., Forsythe B., Gu X., Nyblade A.A. & Brantley S.L., 2021. Seismic ambient noise analyses reveal changing temperature and water signals to 10 s of meters depth in the critical zone. Journal of Geophysical Research: Earth Surface, 126(2), e2020JF005823. https://doi.org/10.1029/2020JF005823.

Peterson J., 1993. Observations and Modeling of Seismic Background Noise. Albuqueerque, New Mexico.

Pierson W.J. & Moskowitz L., 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. Journal of Geophysical Research, 69(24), 5181–5190. https://doi.org/10.1029/JZ069I024P05181.

Rahman M.Z., Hossain M.S., Kamal A.S.M.M., Siddiqua S., Mustahid F. & Farazi A.H., 2018. Seismic site characterization for Moulvibazar town, Bangladesh. Bulletin of Engineering Geology and the Environment, 77(4), 1451–1471. https://doi.org/10.1007/s10064-017-1031-6.

Shapiro N.M., Campillo M., Stehly L. & Ritzwoller M.H., 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339.

Singh A., Bhushan K., Singh C., Steckler M.S., Akhter S.H., Seeber L., Kim W.Y. et al., 2016. Crustal structure and tectonics of Bangladesh: New constraints from inversion of receiver functions. Tectonophysics, 680, 99–112. https://doi.org/10.1016/j.tecto.2016.04.046.

Steckler M.S., Akhter S.H. & Seeber L., 2008. Collision of the Ganges-Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard. Earth and Planetary Science Letters, 273(3–4), 367–378. https://doi.org/10.1016/j.epsl.2008.07.009.

Steckler M.S., Mondal D.R., Akhter S.H., Seeber L., Feng L., Gale J., Hill E.M. & Howe M., 2016. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615–618. https://doi.org/10.1038/ngeo2760.

Uthaman M., Singh C., Singh A., Jana N., Dubey A.K., Sarkar S. & Tiwari A.K., 2022. Spatial and temporal variation of the ambient noise environment of the Sikkim Himalaya. Scientific Reports, 12(1), 274. https://doi.org/10.1038/s41598-021-04183-x.

Vassallo M., Festa G. & Bobbio A., 2012. Seismic ambient noise analysis in southern Italy. Bulletin of the Seismological Society of America, 102(2), 574–586. https://doi.org/10.1785/0120110018.

Webb S.C., 1998. Broadband seismology and noise under the ocean. Reviews of Geophysics, 36(1), 105–142. https://doi.org/10.1029/97RG02287.

Downloads

Published

2023-09-15

How to Cite

Zannat, N., Farazi, A. H., Kamal, A. M., Rahman, M. Z., & Hossain, M. S. (2023). Diurnal seismic ambient noise and seismic station performance characterization in the Bengal Basin, Bangladesh. Geology, Geophysics and Environment, 49(3), 209–224. https://doi.org/10.7494/geol.2023.49.3.209

Issue

Section

Articles