Opoka – a mysterious carbonate-siliceous rock: an overview of general concepts

Authors

DOI:

https://doi.org/10.7494/geol.2022.48.3.257

Keywords:

Cretaceous, opoka, opal-CT, siliceous sponges, bathymetry

Abstract

The opoka is a carbonate-siliceous marine sedimentary rock, forming a thick succession of Upper Cretaceous age in Poland and in other regions of Europe. This rock has been studied for over 150 years, but only the use of modern analytical techniques enables for the formulation of its mineralogical definition, which identifies
the distinct features of opoka and allows it to be distinguished from other rocks (e.g. chalk, gaize). Parallel to the petrographic research on opoka, its palaeobathymetric interpretations, which were based on the palaeotectonic models of Danish-Polish Trough inversion has been revised. Depending on the model of palaeotectonic history, opoka has been interpreted as a deep-water or shallow facies, without detailed petrographic studies of its mineralogical composition. The paper presents various aspects of opoka, including history of the term, nomenclature, mineralogical composition, microtexture and palaeoecological significance of Cretaceous opoka. New data which permit precise definition of this rock term, and its mineralogical composition are discussed in the light of palaeoecological reconstructions, bathymetry and existing models of opoka distribution.

Downloads

Download data is not yet available.

References

Abdel-Gawad G.I., 1986. Maastrichtian non-cephalopod mollusks (Scaphopoda, Gastropoda and Bivalvia) of the Middle Vistula Valley, Central Poland. Acta Geologica Polonica, 36, 69–224.

Barton D.C., 1918. Notes on the Mississippian chert of St. Louis area. Journal of Geology, 26, 361–374.

Bavestrello G., Cattaneo-Vietti R., Cerrano C., Cerutti S. & Sará M., 1996. Contribution of sponge spicules to the composition of biogenic silica in the Ligurian Sea. Marine Ecology, 17(1–3), 41–50. https://doi.org/10.1111/j.1439-0485.1996.tb00488.x.

Behl R.J., 1992. Chertification in the Monterey Formation of California and Deep-Sea sediments of the West Pacific. Santa Cruz, University of California [Ph.D. thesis].

Behl R.J., 2011. Chert spheroids of the Monterey Formation, California (USA): early diagenetic structures of bedded siliceous deposits. Sedimentology, 58(2), 325–351. https://doi.org/10.1111/j.1365-3091.2010.01165.x.

Bertolino M., Oprandi A., Santini C., Castellano M., Pansini M., Boyer M. & Bavestrello G., 2017. Hydrothermal waters enriched in silica promote the development of a sponge community in North Sulawesi (Indonesia). The European Zoological Journal, 84(1), 128–135. https://doi.org/10.1080/11250003.2016.1278475.

Bieda F., 1933. Gąbki krzemionkowe senonu okolic Krakowa [Sur les spongiaires siliceux du Sénonien des environs de Cracovie]. Rocznik Polskiego Towarzystwa Geologicznego, 9, 1–41.

Błaszkiewicz A., 1980. Campanian and Maastrichtian ammonites of the Middle Vistula River Valley, Poland: A stratigraphic-palaeontological study. Prace Instytutu Geologicznego, 92, Wydawnictwa Geologiczne, Warszawa.

Bosák P., 2000. Bohemian Karst, Czech Republic. Part III: Collapse Structures. Acta Crasologica, 29, 35–50.

Bragina L.G. & Bragin N.Yu., 1996. Stratigraphy and Radiolarians of the Stratotype Section of the Perapedhi Formation of the Upper Cretaceous of Cyprus. Stratigraphy and Geological Correlation, 4, 38–45. https://doi.org/10.1134/S0869593806050042.

Bramlette M.N., 1946. The Monterey Formation of California and the origin of its siliceous rocks. U.S. Geological Survey Professional Paper, 212, U. S. Government Printing Office, Washington.

Bromley R.G., 1975. Trace fossils at omission surfaces. [in:] Frey R.W. (ed.), The Study of Trace Fossils, Springer-Verlag, New York, 399–428.

Bromley R.G. & Ekdale A.A., 1984. Chondrites: a trace fossil indicator of anoxia in sediments. Science, 224, 872–874. https://doi.org/10.1126/science.224.4651.872.

Brückner A., 2006. Taxonomy and paleoecology of lyssacinosan Hexactinellida from the Upper Cretaceous (Coniacian) of Bornholm, Denmark, in comparison with other ostpaleozoic representatives. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 564, Schweizerbart Science Publishers, Stuttgart.

Cajz V. & Valečka J., 2010. Tectonic setting of the Ohře/Eger Graben between the central part of the České středohoří Mts. and the Most Basin, a regional study. Journal of Geosciences, 55(3), 201–215. https://doi.org/10.3190/jgeosci.075.

Calvert S.E., 1974. Deposition and diagenesis of silica in marine sediments. [in:] Hsü K.J. & Jenkyns H.C. (eds.), Pelagic Sediments: on Land and under the Sea, Special Publication of the International Association of Sedimentologists, 1, Blackwell Scientific Publications, Oxford, 273–299.

Calvert S.E., 1977. Mineralogy of silica phases in deep-sea cherts and porcelanites. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 286, 239–252.

Campbell A.C. & Gieskes J.M., 1984. Water column anomalies associated with hydrothermal activity in the Guaymas Basin, Gulf of California. Earth and Planetary Scientific Letters, 68(1), 57–72. https://doi.org/10.1016/0012-821X(84)90140-7.

Cárdenas P., 2020. Surface microornamentation of demosponge sterraster spicules, phylogenetic and paleontological implications. Frontiers in Marine Science, 7, 613610. https://doi.org/10.3389/fmars.2020.613610.

Cayeux L., 1929 Les roches sédimentaires de France. Roches siliceuses. Mémoire pour servir à l’explication de la carte géologique détaillée de la France. Imprimerie nationale, Paris.

Cember R.P., 1996. Are undiscovered hydrothermal vents in the southern Red Sea the main source of silica and helium 3 for the Red Sea deep water? Journal of Geophysical Research, 101(C1), 1225–1232. https://doi.org/10.1029/95JC02695.

Chenot E., Pellenard P., Martinez M., Deconinck J.-F., Amiotte-Suchet P., Thibault N., Bruneau L. et al., 2016. Clay mineralogical and geochemical expressions of the “Late Campanian event” in the Aquitaine and Paris basins (France): palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 447, 42–52. https://doi.org/10.1016/j.palaeo.2016.01.040.

Clayton C.J., 1984. Geochemistry of Chert Formation in Upper Cretaceous Chalk. University of London, London [Ph.D. thesis].

Clayton C.J., 1986. The chemical environment of flint formation in Upper Cretaceous Chalks. [in:] de Sieveking G. & Hart M.B. (eds.), The Scientific Study of Flint and Chert: Proceedings of the Fourth International Flint Symposium Held at Brighton Polytechnic, 10–15 April 1983, Cambridge University Press, Cambridge, 43–54.

Conley D.J., Frings P.J., Fontorbe G., Clymans W., Stadmark J., Hendry K.R., Marron A.O. & De La Rocha C.L., 2017. Biosilicification drives a decline of dissolved Si in the oceans through geologic time. Frontiers in Marine Science, 4(397), 1–19. https://doi.org/10.3389/fmars.2017.00397.

Dadlez R., 1976. Rozwój sedymentacyjno-paleotektoniczny. [in:] Dadlez R. (red.), Perm i mezozoik niecki pomorskiej, Prace Instytutu Geologicznego, 79, Wydawnictwa Geologiczne, Warszawa, 105–112.

Dadlez R., 1980. Tektonika wału pomorskiego [Tectonics of the Pomeranian Swell NW Poland]. Kwartalnik Geologiczny, 24(4), 741–747.

Deconinck J.-F., Amédro F., Baudin F., Godet A., Pellenard P., Robaszynski F. & Zimmerlin I., 2005. Late Cretaceous palaeoenvironments expressed by the clay mineralogy of Cenomanian-Campanian chalks from the east of the Paris Basin. Cretaceous Research, 26(2), 171–179. https://doi.org/10.1016/j.cretres.2004.10.002.

Dubicka Z. & Peryt D., 2012. Latest Campanian and Maastrichtian palaeoenvironmental changes: Implications from an epicontinental sea (SE Poland and western Ukraine). Cretaceous Research, 37, 272–284. https://doi.org/10.1016/j.cretres.2012.04.009.

Erba E., Watkins D. & Mutterlose J., 1995. Campanian dwarf calcareous nannofossils from Wodejebato Guyot. Proceedings of the Ocean Drilling Program, Scientific Results, 144, 141–156. https://doi.org/10.2973/odp.proc.sr.144.005.1995.

Fabricius I.L., 2007. Chalk: composition, diagenesis and physical properties. Bulletin of the Geological Society of Denmark, 55, 97–128. https://doi.org/10.37570/bgsd-2007-55-08.

Faÿ-Gomord O., Soete J., Katika K., Galaup S., Caline B., Descamps F., Lasseur E. et al., 2016. New insight into the microtexture of chalks from NMR analysis. Marine and Petroleum Geology, 75, 252–271. https://doi.org/10.1016/j.marpetgeo.2016.04.019.

Gutt J., Böhmer A. & Dimmler W., 2013. Antarctic sponge spicule mats shape macrobenthic diversity and act as a silicon trap. Marine Ecology Progress Series, 480, 57–71. https://doi.org/10.3354/MEPS10226.

Halamski A.T., 2013. Latest Cretaceous leaf floras from southern Poland and western Ukraine. Acta Palaeontologica Polonica, 58(2), 407–443. https://doi.org/10.4202/app.2011.0024.

Heath G.R. & Moberly Jr. R., 1971. Cherts from the western Pacific, leg 7, Deep Sea Drilling Project. [in:] Winterer E.L., Riedel W.R. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 7, U. S. Government Printing Office, Washington, 991–1007.

Hesse R., 1988. Origin of chert: diagenesis of biogenic siliceous sediments. Geoscience Canada, 15(3), 171–19.

Hesse R. & Schacht U., 2011. Early diagenesis of deep-sea sediments. [in:] Hüneke H. & Mudler T. (eds.), Deep-Sea Sediments, Developments in Sedimentology, 63, Elsevier, Amsterdam, 557–713.

Hooper J.N.A., Van Soest R.W.M. & Willenz P. (eds.), 2002. Systema Porifera: A Guide to the Classification of Sponges. Volume 1. Kluwer Academic/Plenum Publishers, New York.

Hurcewicz H., 1966. Siliceous sponges from the Upper Cretaceous of Poland; Part I, Tetraxonia. Acta Palaeonologica Polonica, 11, 15–129.

Hurcewicz H., 1968. Siliceous sponges from the Upper Cretaceous of Poland; Part II, Monaxonia and Triaxonia. Acta Palaeonologica Polonica, 13, 3–9.

Jakobsen F., Lindgreen H. & Springer N., 2000. Precipitation and flocculation of spherical nano silica in North Sea chalk. Clay Minerals, 35(1), 175–184. https://doi.org/10.1180/000985500546567.

Jaskowiak-Schoeneichowa M., 1981. Sedymentacja i stratygrafia kredy górnej w północno-zachodniej Polsce [Upper Cretceous sedimentation and stratigraphy in north-western Poland]. Prace Instytutu Geologicznego, 98, Wydawnictwa Geologiczne, Warszawa.

Jeans C.V., 1978. Silifications and associated clay assemblages in the Cretaceous marine sediments of Southern England. Clay Minerals, 13, 101–124.

Jurkowska A., 2016. Inoceramid stratigraphy and depositional architecture of the Miechów Synclinorium (southern Poland). Acta Geologica Polonica, 66, 59–84.

Jurkowska A., 2022. The biotic-abiotic control of Si burial in marine carbonate systems of the pre-Eocene Si cycle. Global Biogeochemical Cycles, 36, e2021GB007079. https://doi.org/10.1029/2021GB007079.

Jurkowska A. & Barski M., 2017. Maastrichtian island in the central European Basin – new data inferred from palynofacies analysis and inoceramid stratigraphy. Facies, 63, 26. https://doi.org/10.1007/s10347-017-0509-9.

Jurkowska A. & Świerczewska-Gładysz E., 2020a. New model of Si balance in the Late Cretaceous epiconinental European Basin. Global and Planetary Change, 186, 103–108. https://doi.org/10.1016/j.gloplacha.2019.103108.

Jurkowska A. & Świerczewska-Gładysz E., 2020b. Evolution of Late Cretaceous Si cycling reflected in formation of siliceous nodules (flints and cherts). Global and Planetary Change, 195, 103-334. https://doi.org/10.1016/j.gloplacha.2020.103334.

Jurkowska A., Barski M. & Worobiec E., 2019a. The relations of the costal environment to early diagenetic clinoptilolite (zeolite) formation – new data from the Late Cretaceous European Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 524, 166–182. https://doi.org/10.1016/j.palaeo.2019.03.025.

Jurkowska A., Świerczewska-Gładysz E., Bąk M. & Okoński S., 2019b. The role of biogenic silica in formation of Upper Cretaceous pelagic carbonates and its paleoecological implications. Cretaceous Research, 93, 170–187. https://doi.org/10.1016/j.cretres.2018.09.009.

Kastner M., Keene J.B. & Gieskes J.M., 1977. Diagenesis of siliceous oozes. I. Chemical controls on the rate of opal-A to opal-CT transformation – an experimental study. Geochimica et Cosmochimica. Acta, 41, 1041–1059. https://doi.org/10.1016/0016-7037(77)90099-0.

Kavaliauskaité I., Denafas G., Uibu M. & Kuusik R., 2006. Natural Minerals Opoka and Glauconite as Sorbents for Acidic Gases. Environmental Research, Engineering and Management, 37(3), 36–42.

Kelly M., 2007. The marine fauna of New Zealand: Porifera: lithistid Demospongiae (rock sponges). NIWA Biodiversity Memoir, 121, National Institute of Water and Atmospheric Research, Wellington.

Kersken D., Feldmeyer B. & Janussen D., 2016. Sponge communities of the Antarctic Peninsula: influence of environmental variables on species composition and richness. Polar Biology, 39, 851–862. https://doi.org/10.1007/s00300-015-1875-9.

Klatkowa H., 1987. Objaśnienia do szczegółowej mapy geologicznej Polski. 1:50 000. Arkusz Pabianice (664). Wydawnictwa Geologiczne, Warszawa.

Kowalski W.C., 1948. Szkic geologiczny utworów kredowych w okolicy Solcy [Geological outline of Cretaceous deposits in the environs of Solca]. Biuletyn Instytutu Geologicznego, 51, 5–52.

Krzywiec P., 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough – lateral variations in timing and structural style. Geological Quarterly, 50, 151–168.

Krzywiec P., Gutowski J., Walaszczyk I., Wróbel G. & Wybraniec S., 2009. Tectonostratigraphic model of the Late Cretaceous inversion along the Nowe Miasto-Zawichost Fault Zone, SE Mid-Polish Trough. Geological Quarterly, 53(1), 27–48.

Krzywiec P., Stachowska A. & Stypa A., 2018. The only way is up – on Mesozoic uplifts and basin inversion events in SE Poland. [in:] Kilhams B., Kukla P.A., Mazur S., McKie T., Mijnlieff H.F. & Van Ojik K. (eds.), Mesozoic Resource Potential in the Southern Permian Basin, Geological Society, London, Special Publications, 469, The Geological Society of London, 33–57.

Kutek J. & Głazek J., 1972. The Holy Cross area, central Poland, in the Alpine cycle. Acta Geologica Polonica, 22(4), 603–653.

Lancelot Y., 1973, Chert and Silica Diagenesis in Sediments from the Central Pacific. Deep Sea Drilling Project Reports and Publications, 17, 377–405. https://doi.org/10.2973/DSDP.PROC.17.112.1973.

Landmesser M., 1995. Mobilität durch Metastabilität: SiO2 Transport und Akkumulation beiniedrigen Temperaturen. Chemie der Erde, 55, 149–176.

Leszczyński K., 2000. The Late Cretaceous sedimentation and subsidence south-west of the Kłodawa Salt Diapir, central Poland. Geological Quarterly, 44(2), 167–174.

Leszczyński K., 2010. Rozwój litofacjalny późnej kredy Niżu Polskiego [Lithofacies evolution of the Late Cretaceous basin in the Polish Low lands]. Biuletyn Państwowego Instytutu Geologicznego, 443, 33–54.

Leszczyński K., 2012. The internal geometry and lithofacies pattern of the Upper Cretaceous–Danian sequence in the Polish Lowlands. Geological Quarterly, 56(2), 363–386.

Leys S.P., Mackie G.O. & Reiswig H.M., 2007. Biology of glass sponges. Advances in Marine Biology, 52, 1–145. https://doi.org/10.1016/s0065-2881(06)52001-2.

Lindgreen H. & Jakobsen F., 2012. Marine sedimentation of nano-quartz forming flint in North Sea Danian chalk. Marine Petroleum Geology, 38(1), 73–82. https://doi.org/10.1016/j.marpetgeo.2012.08.007.

Lindgreen H., Drits V.A., Salyn A.L., Jakobsen F. & Springer N., 2011. Formation of flint horizons in North Sea chalk through marine sedimentation of nano-quartz. Clay Minerals, 46(4), 525–537. https://doi.org/10.1180/claymin.2011.046.4.525.

Lynne B.Y., Campbell K.A., James B.J., Browne P.R.L. & Moore J., 2007. Tracking crystallinity in siliceous hot-spring deposits. American Journal of Science, 307(3), 612–641. https://doi.org/10.2475/03.2007.03.

Machalski M., 2005. The youngest Maastrichtian ammonite faunas from Poland and their dating by scaphitids. Cretaceous Research, 26(5), 813–836. https://doi.org/10.1016/j.cretres.2005.05.007.

Machalski M. & Jagt J.W.M., 1998. Latest Maastrichtian pachydiscid ammonites from the Netherlands and Poland. Acta Geologica Polonica, 48, 121–133.

Machalski M. & Malchyk O., 2016. Classic palaeontological sites in the Upper Cretaceous of western Ukraine: History of research and biostratigraphy. Przegląd Geologiczny, 64, 570–576.

Machalski M. & Malchyk O., 2019. Relative bathymetric position of opoka and chalk in the Late Cretaceous European Basin. Cretaceous Research, 102, 30–36. https://doi.org/10.1016/j.cretres.2019.05.007.

Mackenzie F.T. & Gees R., 1971. Quartz: synthesis at earth-surface conditions. Science, 173(3996), 533–535. https://doi.org/10.1126/science.173.3996.533.

Madsen H.B. & Stemmerik L., 2010. Diagenesis of flint and porcellanite in the Maastrichtian Chalk at Stevns Klint, Denmark. Journal of Sedimentary Research, 80(6), 578–588. https://doi.org/10.2110/jsr.2010.052.

Madsen H.B., Stemmerik L. & Surlyk F., 2010. Diagenesis of silica-rich moundbedded chalk, the Coniacian Arnager Limestone, Denmark. Sedimentary Geology, 223(1–2), 51–60. https://doi.org/10.1016/j.sedgeo.2009.10.002.

Maldonado M., Carmona M.C., Velásquez Z., Puig A., Cruzado A., López A., Young C.M., 2005. Siliceous sponges as a silicon sink: an overlooked aspect of the benthopelagic coupling in the marine silicon cycle. Limnology and Oceanography, 50(3), 799–809. https://doi.org/10.4319/lo.2005.50.3.0799.

Maliva R.G. & Siever R., 1989. Nodular chert formation in carbonate rock. The Journal of Geology, 97(4), 421–433.

Maliva R.G., Knoll A.H. & Siever R., 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. PALAIOS, 4(6), 519–532. https://doi.org/10.2307/3514743.

Meister P., Chapligin B., Picard A., Meyer H., Fischer C., Rettenwander D., Amthauer G. et al., 2014. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific – a modern analogue for banded iron/chert formations? Geochemica et Cosmochimica Acta, 137, 188–207. https://doi.org/10.1016/j.gca.2014.03.035.

Michalopoulos P. & Aller R.C., 2004. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochimica et Cosmochimica Acta, 68(5), 1061–1085. https://doi.org/10.1016/j.gca.2003.07.018.

Mikuláš R., 2006. Ichnofabric and substrate consistency in Upper Turonian carbonates of the Bohemian Cretaceous Basin (Czech Republic). Geologica Carpathica, 57(2), 79–90.

Mortimore R.N. & Wood C.J., 1986. The distribution of Flint in the English Chalk, with particular reference to the ‘Brandon Flint Series’ and the high Turonian flint maximum. [in:] de Sieveking G. & Hart M.B. (eds.), The Scientific Study of Flint and Chert, Cambridge University Press, Cambridge, 7–20.

Murata K.J. & Larson R.R., 1975. Diagenesis of Miocene siliceous shales, Temblor Range, California. US Geological Survey Journal of Research, 3, 553–566.

Murata K.J., Friedman I. & Gleason J.D., 1977. Oxygen isotope relations between diagenetic silica minerals in Monterey Shale, Temblor Range, California. American Journal of Science, 277(3), 259–272. https://doi.org/10.2475/ajs.277.3.259.

Niebuhr B., 1995. Fazies-Differenzierungen und ihre Steuerungsfaktoren in der höheren Oberkreide von S-Niedersachsen/Sachsen-Anhalt (N-Deutschland). Berliner geowissenschaftliche Abhandlungen: Geologie und Paläontologie, 174, Selbstverlag Fachbereich Geowissenschaften, Berlin.

Niebuhr B. & Prokoph A., 1997. Periodic-cyclic and chaotic successions of Upper Cretaceous (Cenomanian to Campanian) pelagic sediments in the North German Basin. Cretaceous Research, 18(5), 731–750. https://doi.org/10.1006/cres.1997.0083.

Niebuhr B., Volkmann R. & Schönfeld J., 1997. Das obercampane polyplocum-Event der Lehrter Westmulde (Oberkreide, N-Deutschland): Bio-/Litho/Sequenzstratigraphie, Fazies-Entwicklung und Korrelation. Freiberger Forschunsheft, 468, 211–243.

Niechwedowicz M., Walaszczyk I. & Barski M., 2021. Phytoplankton response to palaeoenvironmental changes across the Campanian–Maastrichtian (Upper Cretaceous) boundary interval of the Middle Vistula River section, central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 577, 110558. https://doi.org/10.1016/j.palaeo.2021.110558.

Noe-Nygaard N. & Surlyk F., 1985. Mound bedding in a sponge-rich Coniacian chalk, Bornholm, Denmark. Bulletin of the Geological Society of Denmark, 34, 237–249. https://doi.org/10.37570/bgsd-1985-34-19.

Pękala A., 2019. The opoka-rock from the Mesozoic/Neogene contact zone in the Bełchatów lignite deposit – characteristics of a petrographic nature and as a raw material. Journal of Ecological Engineering, 20(8), 232–237. https://doi.org/10.12911/22998993/111714.

Peryt D., 2000. O wieku opok z Piotrawina nad Wisłą, Polska Środkowa. Biuletyn Państwowego Instytutu Geologicznego, 393, 81–94.

Pisciotto K.A., 1981. Diagenetic trends in the siliceous facies of the Monterey Shale in the Santa Maria region, California. Sedimentology, 28(4), 547–571. https://doi.org/10.1111/j.1365-3091.1981.tb01701.x.

Pisera A., 1999. Postpalaeozoic history of the siliceous sponges with rigid skeleton. Memoires of the Queensland Museum, 44, 463–472.

Pożaryska K., 1952. Zagadnienia sedymentologiczne górnego mastrychtu i danu okolic Puław [Sedimentological problems of Upper Maestrichtian and Danian of the Puławy environment (Middle Vistula)]. Biuletyn Państwowego Instytutu Geologicznego, 81, Wydawnictwo Państwowego Instytutu Geologicznego, Warszawa.

Pożaryski W., 1938. Stratygrafia senonu w przełomie Wisły między Rachiowem i Puławami. Biuletyn Państwowego Instytutu Geologicznego, 6, Kasa im. Mianowskiego, Warszawa.

Pożaryski W., 1960. Zarys stratygrafti i paleogeografii kredy na Niżu Polskim [An outline of stratigraphy and palaeogeography of the Cretaceous in the Polish Lowland]. [in:] Bórska S. & Smoleński S. (red.), Czterdzieści lat Instytutu Geologicznego: 1919–1959. Cz. 2, Prace – Instytut Geologiczny, 30, Wydawnictwa Geologiczne, Warszawa, 377–440.

Presti M. & Michalopoulos P., 2008. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta. Continental Shelf Research, 28(6), 823– 838. https://doi.org/10.1016/j.csr.2007.12.015.

Pusch G.G., 1833. Geognostische Beschreibung von Polen, so wie der übrigen Nordkarpathen-Länder. T. 1. J.G. Cotta’schen Buchhandlung, Stuttgart – Tübingen .

Pusch G.G., 1836. Geognostische Beschreibung von Polen, so wie der übrigen Nordkarpathen-Länder. T. 2. J.G. Cotta’schen Buchhandlung, Stuttgart – Tübingen.

Püttmann T. & Jörg Mutterlose J., 2021. Paleoecology of Late Cretaceous Coccolithophores: Insights from the Shallow‐Marine Record, Paleoceanography and Paleoclimatology, 36(3), e2020PA004161. https://doi.org/10.1029/2020PA004161.

Racki G. & Cordey F., 2000. Radiolarian palaeoecology and radiolarites: is the present the key to the past? Earth-Science Reviews, 52(1–3), 83–120. https://doi.org/10.1016/S0012-8252(00)00024-6.

Rad U., von & Rösch H., 1974. Petrology and diagenesis of deep-sea cherts from the Central Atlantic. [in:] Hsü K.J. & Jenkyns H.C. (eds.), Pelagic Sediments: On Land and under the Sea, Special Publication of the International Association of Sedimentologists, 1, Blackwell Scientific Publications, Oxford, 327–347.

Remin Z., 2015. The Belemnitella stratigraphy of the Upper Campanian – basal Maastrichtian of the Middle Vistula section, central Poland. Geological Quarterly, 59(4), 783–813. https://doi.org/10.7306/gq.1257.

Remin Z., 2018. Understanding coleoid migration patterns between eastern and western Europe – belemnite faunas from the upper lower Maastrichtian of Hrebenne, southeast Poland. Cretaceous Research, 87, 368–384. https://doi.org/10.1016/j.cretres.2017.06.010.

Remin Z., Gruszczyński M. & Marshall J.D., 2016. Changes in paleo-circulation and the distribution of ammonite faunas at the Coniacian–Santonian transition in central Poland and western Ukraine. Acta Geologica Polonica, 66, 107–124. https://doi.org/10.1515/agp-2016-0006.

Remin Z., Cyglicki M., Barski M., Dubicka Z. & RoszkowskaRemin J., 2021. The K-Pg boundary section at Nasiłów, Poland: stratigraphic reassessment based on foraminifers, dinoflagellate cysts and palaeomagnetism. Geological Quarterly, 65(3), 45. https://doi.org/10.7306/gq.1614.

Remin Z., Cyglicki M. & Niechwedowicz M., 2022. Deep vs. shallow – two contrasting theories? A tectonically activated Late Cretaceous deltaic system in the axial part of the Mid-Polish Trough: a case study from southeast Poland. Solid Earth, 13(3), 681–703. https://doi.org/10.5194/se-13-681-2022.

Riech V. & von Rad U., 1979. Eocene porcellanites and Early Cretaceous cherts from the Western North Atlantic Basin. Initial Report of Deep-Sea Drilling Project, 43, 437–455. https://doi.org/10.2973/DSDP.PROC.43.113.1979.

Rodgers K.A., Browne P.R.L., Buddle T.F., Cook K.L., Greatrex R.A., Hampton W.A., Herdianita N.R. et al., 2004. Silica phases in sinters and residues from geothermal fields of New Zealand. Earth-Science Reviews, 66(1–2), 1–61. https://doi.org/10.1016/j.earscirev.2003.10.001.

Rutkowski J., 1960. O utworach piaszczystych w mastrychcie okolic Miechowa [Sandy deposits Maestrichtian age in the vicinity of Miechów]. Rocznik Polskiego Towarzystwa Geologicznego, 30(3), 289–303.

Rutkowski J., 1965. Senon okolicy Miechowa [Senonian in the area of Miechów, Southern Poland]. Rocznik Polskiego Towarzystwa Geologicznego, 35(1), 3–53.

Saïag J., Collin P.-Y., Sizun J.-P., Herbst F., Faÿ-Gomord O., Smith C.C., Caline B. & Lasseur E., 2019. Classifying chalk microtextures: Sedimentology versus diagenetic origin (Cenomanian-Santonian, Paris Basin, France). Sedimentology, 66(7), 2976–3007. https://doi.org/10.1111/sed.12618.

Samsonowicz J., 1925. Szkic geologiczny okolic Rachowa nad Wisłą oraz transgresje albu i cenomanu w bruździe północno-europejskiej. Sprawozdania Polskiego Instytutu Geologicznego, 3(1–2), 45–98.

Scholle P.A., 1977. Chalk diagenesis and its relation to petroleum exploration: oil from chalks, a modern miracle? American Association of Petroleum Geologists Bulletin, 61(7), 982–1009. https://doi.org/10.1306/C1EA43 B5-16C9-11D7-8645000102C1865D.

Schrammen A., 1899. Beitrag zur Kenntnis der obersenonen Tetractinelliden. Mitteilungen aus dem Roemer-Museum, 14, 1–9.

Schrammen A., 1910. Die Kieselspongien der oberen Kreide von Nordwestdeutschland, I Teil, Tetraxonia, Monaxonia und Silicea incerte sedis. Palaeontographica, Supplement, 5(1), 1–175.

Siever R., 1992. The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56(8), 3265–3272. https://doi.org/10.1016/0016-7037(92)90303-Z.

Sujkowski Z., 1926. O utworach jurajskich, kredowych i czwartorzędowych okolic Wolbromia [Sur le Jurassique, le Cretace’ et le Quaternaire des environs de Wolbrom]. Sprawozdania Polskiego Instytutu Geologicznego, 3(3–4), 382–467.

Sujkowski Z., 1931. Petrografia kredy Polski. Kreda z głębokiego wiercenia w Lublinie w porównaniu z kredą niektórych innych obszarów Polski. Sprawozdania Państwowego Instytutu Geologicznego, 6, 485–628.

Świdrowska J., 2007. Kreda w regionie lubelskim – sedymentacja i jej tektoniczne uwarunkowania. Biuletyn Instytutu Geologicznego, 422, 63–78.

Świdrowska J. & Hakenberg M., 1999. Subsydencja i początki inwersji bruzdy śródpolskiej na podstawie analizy map miąższości i litofacji osadów górnokredowych – replika [Subsidence and the problem of incipient inversion in the Mid-Polish Trough based on thickness maps and Cretaceous lithofacies analysis – reply]. Przegląd Geologiczny, 47(1), 61–68.

Świdrowska J., Hakenberg M., Poluhovič B., Seghedi A. & Višnâkov I., 2008. Evolution of the Mesozoic basin of the south western edge of the East European Craton (Poland, Ukraine, Moldova, Romania). Studia Geologica Polonica, 130, 3–130.

Świerczewska-Gładysz E., 2006. Late Cretaceous siliceous sponges from the Middle Vistula River Valley (Central Poland) and their palaeoecological significance. Annales Societatis Geologorum Poloniae, 76, 227–296.

Świerczewska-Gładysz E., 2012. Hexactinellid sponge assemblages across the Campanian–Maastrichtian boundary in the Middle Vistula River section, central Poland. Acta Geologica Polonica, 62(4), 561–580.

Świerczewska-Gładysz E., 2016. Early Campanian (Late Cretaceous) Pleromidae and Isoraphiniidae (lithistid Demospongiae) from the Łódź-Miechów Synclinorium (central and southern Poland): new data and taxonomic revision. Papers in Palaeontology, 2(2), 189–233. https://doi.org/10.1002/spp2.1037.

Świerczewska-Gładysz E. & Jurkowska A., 2013. Occurrence and paleoecological significance of lyssacinosid sponges in the Upper Cretaceous deposits of southern Poland. Facies, 59, 763–777. https://doi.org/10.1007/s10347-012-0340-2.

Świerczewska-Gładysz E. & Jurkowska A., 2022. Campanian (Late Cretaceous) Theonellidae and Phymaraphiniidae (lithistid Demospongiae) from the Miechów and Mogilno-Łódź synclinoria (southern and central Poland): new data and taxonomic revision. Papers in Palaeontology, 2022, e1426. https://doi.org/10.1002/spp2.1426.

Świerczewska-Gładysz E. & Olszewska-Nejbert D., 2006. Pochodzenie sfosfatyzowanych gąbek z warstwy dańskiego piaskowca glaukonitowego z Nasiłowa (dolina środkowej Wisły) [The origin of phosphatized sponges from the Danian glauconitic sandstone from Nasiłów (central Poland, Vistula River valley)]. Przegląd Geologiczny, 54(8), 710–719.

Świerczewska-Gładysz E., Jurkowska A. & Niedźwiedzki R., 2019. New data about the Turonian–Coniacian sponge assemblage from Central Europe. Cretaceous Research, 94, 229–258. https://doi.org/10.1016/j.cretres.2018.10.001.

Tarr W.A., 1917. Origin of chert in the Burlington Limestone. American Journal of Sciences, 44(264), 409–452. https://doi.org/10.2475/ajs.s4-44.264.409.

Tréguer P.J. & De La Rocha C.L., 2013. The world ocean silica cycle. Annual Review of Marine Science, 5, 477–501. https://doi.org/10.1146/annurev-marine-121211-172346.

Tréguer P., Sutton J., Brzezinski M., Charette M., Devries T., Dutkiewicz S., Ehlert C. et al., 2021. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences, 18(4), 1269–1289. https://doi.org/10.5194/bg-18-1269-2021.

Uriz M.J., 2002. Family Geodiidae Gray, 1867. [in:] Hooper J.N.A., & Van Soest R.W.M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. Volume 1, Kluwer Academic/Plenum Publishers, New York, 134–140. https://doi.org/10.1007/978-1-4615-0747-5_14.

Varkouhi S., Cartwright J.A. & Tosca N.J., 2020. Anomalous compaction due to silica diagenesis – Textural and mineralogical evidence from hemipelagic deep-sea sediments of the Japan Sea. Marine Geology, 426, 104–204. https://doi.org/10.1016/j.margeo.2020.106204.

Varkouhi S., Tosca N.J. & Cartwright J.A., 2021. Temperature–time relationships and their implications for thermal history and modelling of silica diagenesis in deep-sea sediments. Marine Geology, 439, 106541, 106–541. https://doi.org/10.1016/j.margeo.2021.106541.

Walaszczyk I., 2004. Inoceramids and inoceramid biostratigraphy of the Upper Campanian to basal Maastrichtian of the Middle Vistula River section, central Poland. Acta Geologica Polonica, 54(1), 95–168.

Walaszczyk I., 2012. Integrated stratigraphy of the Campanian–Maastrichtian boundary succession of the Middle Vistula River (Central Poland) section; introduction. Acta Geologica Polonica, 62(4), 485–493. https://doi.org/10.2478/v10263-012-0027-6.

Walaszczyk I. & Remin Z., 2015. Kreda obrzeżenia Gór Świętokrzyskich. [in:] Skompski S. & Mizerski W. (red.), Ekstensja i inwersja powaryscyjskich basenów sedymentacyjnych: LXXXIV Zjazd Naukowy Polskiego Towarzystwa Geologicznego: Chęciny, 9–11 września 2015 r., Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa, 41–50.

Whitney F., Conway K.W., Thomson R.E., Barrie J.V., Krautter M. & Mungov G., 2005. Oceanographic habitat of sponge reefs on the Western Canadian Continental Shelf. Continental Shelf Research, 25(2), 211–226. https://doi.org/10.1016/j.csr.2004.09.003.

Williams L.A. & Crerar D.A., 1985. Silica diagenesis; II. General mechanisms. Journal of Sedimentary Petrology, 55(3), 312–321. https://doi.org/10.1306/212F86B1-2B24-11D7-8648000102C1865D.

Williams L.A., Parks G.A. & Crerar D.A., 1985. Silica diagenesis; I. Solubility controls. Journal Sedimentary Petrology, 55(3), 301–311. https://doi.org/10.1306/212F86AC-2B24-11D7-8648000102C1865D.

Wilmsen M. & Niebuhr B., 2017. High-resolution Campanian–Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal components: palaeoceanographic and palaeoenvironmental implications for the Boreal shelf sea. Acta Geologica Polonica, 67, 47–74.

Wise S.W. & Kelts K.R., 1972. Inferred diagenetic history of a weakly silicified deep sea chalk. Transactions – Gulf Coast Association of Geological Societies, 22, 177–203.

Wise S.W. & de Weaver F.M., 1974. Chertification of oceanic sediments. [in:] Hsü K.J. & Jenkyns H.C. (eds.), Pelagic Sediments: On Land and under the Sea, Special Publication of the International Association of Sedimentologists, 1, Blackwell Scientific Publications, Oxford, 301–326.

Zorina S.O., 2020. Comment on ‘Relative bathymetric position of opoka and chalk in the Late Cretaceous European Basin’ by Machalski M. and Malchyk O. [Cretaceous Res. 102 (2019) 30–36]. Cretaceous Research, 115, 104482. https://doi.org/10.1016/j.cretres.2020.104482.

Zorina S.O. & Afanas’eva N.I., 2015. “Camouflaged” pyroclastic material in the Upper Cretaceous-Miocene deposits of the southeastern East European Craton. Doklady Earth Sciences, 463, 770–772. https://doi.org/10.1134/S1028334X15080085.

Downloads

Published

2022-11-07

How to Cite

Jurkowska, A. A., & Świerczewska-Gładysz, E. (2022). Opoka – a mysterious carbonate-siliceous rock: an overview of general concepts. Geology, Geophysics and Environment, 48(3), 257–278. https://doi.org/10.7494/geol.2022.48.3.257

Issue

Section

Articles