Delineation of wellhead protection area based on the analytical elements method (AEM) – a case study with comparative research

Authors

DOI:

https://doi.org/10.7494/geol.2022.48.4.335

Keywords:

groundwater source protection zone, WHPA – wellhead protection area, Olesno intake, groundwater modelling, CFR – calculated fixed radius, FDM – finite differences method, FEM – finite elements method

Abstract

The delineation of protection zones for groundwater intakes is a difficult task resulting from the significant variability of regional and local environmental conditions. Different methods are used, both simple (analytical or graphic), giving estimated results, and the most reliable, but also the most time-consuming ones, based on numerical groundwater flow models. An alternative method for the delineation of protection zones is the analytical elements method (AEM), which gives solutions like those obtained using FDM/FEM modelling methods with a relatively low degree of complexity. The estimated ranges of protection zones obtained with the use of four methods are presented for the selected test area (groundwater intake around Olesno). Results obtained with the use of the FDM model were taken as reference and CFR and SimpleWHPA were used as simplified methods. Comparative studies indicate that the results obtained by the CFR method differ significantly from the results of other methods, and their reliability is low. The results of the SimpleWHPA method are satisfactory, given the relative simplicity of the method. On the other hand, the results obtained with the AEM are close to the results obtained with the FDM treated as a reference. Considering that AEM is less time-consuming than FDM (which requires the most effort for proper model preparation), the use of AEM in the practice of protection zone delineation seems to be an interesting alternative.

Downloads

Download data is not yet available.

References

Anderson M., Woessner W.W. & Hunt R., 2015. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. 2nd ed., Elsevier, Amsterdam.

Bujnovský R., Malík P. & Švasta J., 2016. Evaluation of the risk of diffuse pollution of groundwater by nitrogen substances from agricultural land use as background for allocation of effective measures. Ekológia (Bratislava), 35(1), 66–77. https://doi.org/10.1515/eko-2016-0005.

Centralny Bank Danych Hydrogeologicznych – Bank HYDRO (CBDH), 2022. https://dane.gov.pl/pl/dataset/460, central-ny-bank-danych-hydrogeologicznych-bank-hydro-cbdh [access: 26.04.2022].

Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Com-munity action in the field of water policy. OJ L 327, 22.12.2000.

Diersch H.-J., 2014. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer, Berlin, Heidelberg.

Duda R., Winid B. & Zdechlik R., 2013. Metodyka wyboru optymalnej metody wyznaczania zasięgu stref ochronnych ujęć zwykłych wód podziemnych z uwzględnieniem warunków hydrogeologicznych obszaru RZGW w Krakowie [Methodology of selecting the optimal method of the wellhead protection area delineation taking into account the hydrogeological conditions in areas administered by the Regional Water Management Board in Krakow]. WGGiOŚ AGH, Kraków.

Duda R., Klebert I. & Zdechlik R., 2020. Groundwater pollution risk assessment based on vulnerability to pollution and poten-tial impact of land use forms. Polish Journal of Environmental Studies, 29(1), 87–99. https://doi.org/10.15244/pjoes/104362.

Duda R., Zdechlik R. & Kania J., 2021. Semiquantitative risk assessment method for groundwater source protection using a process-based interdisciplinary approach. Water Resources Management, 35, 3373–3394. https://doi.org/10.1007/s11269-021-02898-0.

Fitts Ch.R. 2013. Groundwater Science. 2nd ed. Academic Press, Amsterdam.

Haisig J. & Wilanowski S., 1990. Szczegółowa mapa geologiczna Polski. Arkusz nr 806: Olesno. Państwowy Instytut Geolo-giczny, Warszawa.

Kaluđerović D., Koren E. & Vižintin G., 2018. Application of analytic element method in hydrogeology. Materials and Geoen-vironment, 65(1), 35–44. https://doi.org/10.1515/rmzmag-2018-0002.

Kraemer S.R., Haitjema H.M. & Kelson V.A., 2005. Working with WHAEM2000: Capture zone delineation for a city wellfield in a valley fill glacial outwash aquifer supporting wellhead protection. EPA/600/R-05/151 (NTIS PB2006-102381), U.S. En-vironmental Protection Agency, Washington.

Kresic N., 2006. Hydrogeology and Groundwater Modeling. 2nd ed. CRC Press, Boca Raton. https://doi.org/10.1201/9781420004991.

Kryza J., Kryza H., Kleśta W. & Kryza J. 2014. Dokumentacja hydrogeologiczna eksploatacyjnych zasobów wód podziemnych dla ujęć wodociągu miejskiego w Oleśnie (Studnie: Ps-2, 2B aw; SI bis2, SII bis, SIII bis, SII aw; 2, 1 aw) [Hydrogeological documentation of exploitation groundwater resources for the municipal water supply in Oleśno (Wells: Ps-2, 2B aw; SI bis2, SII bis, SIII bis, SII aw; 2, 1 aw)]. PRO-AQUA Biuro Projektów [unpublished].

Kulma R. & Zdechlik R., 2009. Modelowanie procesów filtracji. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kra-ków.

Łyp B., 2018. Strefy ochrony ujęć wód podziemnych: problematyka wodociągowa, urbanistyczna i sanitarna. Wydawnictwo Seidel-Przywecki, Warszawa.

Macioszczyk T., Rodzoch A. & Frączek E., 1993. Projektowanie stref ochronnych źródeł i ujęć wód podziemnych: poradnik metodyczny. Ministerstwo Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa, Departament Geologii, Warszawa.

Mather J.R. & Howden N., 2013. History of Hydrogeology: International Contributions to Hydrogeology. CRC Press, Boca Raton.

McDonald M.G. & Harbaugh A.W., 1988. A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations of the Unites Geological Survey, 06-A1, United States Government Printing Office, Washington.

MIKE Powered by DHI, 2022. Feflow – Product documentation. https://www.mikepoweredbydhi.com/download/product-documentation [access: 2.11.2022].

Motyka J. & d’Obyrn K., 2022, The radius of influence of mine drainage – definitions, methods of determination, and practical issues. Journal of Hydrology, 613 (part A), 128422, https://doi.org/10.1016/j.jhydrol.2022.128422.

National Archives and Records Administration (NARA), 2022. Code of Federal Regulations (CFR): Title 49: Subtitle B: Chap-ter I: Subchapter D: Part 195: Subpart A: § 195.6. https://www.ecfr.gov/current/title-49/subtitle-B/chapter-I/subchapter-D/part-195/subpart-A/section-195.6 [access: 14.04.2022].

Pietrzak D., 2021. Modeling migration of organic pollutants in groundwater – Review of available software. Environmental Modelling & Software, 144, 105145. https://doi.org/10.1016/j.envsoft.2021.105145.

Raymond H.A., Bondoc M., McGinnis J., Metropulos K., Heider P., Reed A. & Saines S. 2006. Using analytic element models to delineate drinking water source protection areas. Ground Water, 44(1), 16–23. https://doi.org/10.1111/j.1745-6584.2005.00122.x.

Rogoż M., 2007. Dynamika wód podziemnych. Główny Instytut Górnictwa, Katowice.

Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T. et al., 2018. Physi-co-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial da-ta. Geographia Polonica, 91(2), 143–170. https://doi.org/10.7163/GPol.0115.

Spitz K. & Moreno J., 1996. A practical Guide to Groundwater and Solute Transport Modeling. John Wiley & Sons, Inc., Ho-boken.

United States Environmental Protection Agency (US EPA), 2022. Wellhead Analytic Element Model (WhAEM). https://www.epa.gov/ceam/wellhead-analytic-element-model-whaem [access: 24.04.2022].

United States Geological Survey (USGS), 2022. MODFLOW and Related Programs. https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs [access: 27.04.2022].

Ustawa z dnia 30 maja 1962 r. – Prawo wodne. Dz.U. 1962 nr 34, poz. 158 [The Act of May 30, 1962 – Water Law. Journal of Laws 1962 no. 34, item. 158.

Ustawa z dnia 20 lipca 2017 r. – Prawo wodne. Tekst jednolity Dz.U. 2021 poz. 2233 [The Act of July 20, 2017 – Water Law. Consolidated text Journal of Laws 2021 item 2233].

World Health Organization (WHO), 2017. Global status report on water safety plans: A review of proactive risk assessment and risk management practices to ensure the safety of drinking-water. Geneva. https://apps.who.int/iris/handle/10665/255649 [access: 24.04.2022].

Wuolo R.W., Dahlstrom D.J. & Fairbrother M.D., 1995. Wellhead protection area delineation using the analytic element method of ground-water modeling. Ground Water, 33(1), 71–83. https://doi.org/10.1111/j.1745-6584.1995.tb00264.x.

Zdechlik R., 2016. A review of applications for numerical groundwater flow modeling. [in:] SGEM 2016: 16th International Multidisciplinary Scientific Geoconference: 2–5 November, 2016, Vienna, Austria: conference proceedings. Book 3, Water resources: forest, marine and ocean ecosystems. Vol. 3. Hydrology and water resources, forest ecosystems, STEF92 Tech-nology Ltd., Sofia, 1–18. https://doi.org/10.5593/SGEM2016/HB33/S02.002.

Zdechlik R. & Kałuża A., 2019. The FEM model of groundwater circulation in the vicinity of the Świniarsko intake, near Nowy Sącz (Poland). Geologos, 25(3), 255–262. https://doi.org/10.2478/logos-2019-0028.

Zdechlik R. & Morański W., 2017. Ocena zasobów ujęcia wód podziemnych w Świniarsku k. Nowego Sącza z wykorzystaniem modelowania numerycznego [Assessment of groundwater resources of the Świniarsko (near Nowy Sącz) intake based on numerical modelling]. Przegląd Geologiczny, 65(11/2), 2017, 1411–1415.

Downloads

Published

2022-12-15

Issue

Section

Articles

How to Cite

Delineation of wellhead protection area based on the analytical elements method (AEM) – a case study with comparative research. (2022). Geology, Geophysics and Environment, 48(4), 335–352. https://doi.org/10.7494/geol.2022.48.4.335