Glacial geomorphology and Pleistocene glacier reconstruction in the Demänovská Valley, Low Tatra Mountains, Slovakia
DOI:
https://doi.org/10.7494/geol.2023.49.1.19Keywords:
Low Tatra Mountains, glacier reconstruction, ELA, glacial cirques, rock glaciers, LGM (Last Glacial Maximum)Abstract
In the Western Carpathians, clear evidence of the Pleistocene glaciations only occurs in two mountain massifs – the Tatra and Low Tatra Mountains. The Low Tatra Mountains (2043 m a.s.l.), contrary to the higher and more strongly glaciated Tatra Mountains (2654 m a.s.l.), have previously been much less attractive for scientific research. Hence, in these mountains, both glacial landforms and chronology, together with a detailed reconstruction of glacier geometry and resulted equilibrium line altitude (ELA), are poorly documented. The aim of this paper is to characterize the glacial relief and reconstruction of geometry and ELA of the Zadná voda glacier in the Demänovská Valley system which belongs to the category of the largest Pleistocene glaciers on the northern slope of the Low Tatra Mountains. The mapping results show that a freshly shaped, massive terminal moraine of maximal ice extent (MIE, likely formed during the global Last Glacial Maximum – LGM) occurs 4.3 km distance down-valley from the glacial cirque backwalls. There is no evidence of deposits from older glaciations beyond the terminal moraine down the valley. The terminal zone of the MIE features a fresh morainic landscape with hummocky topography with kettle hollows and the only known morainic lake in the Low Tatra Mountains – Vrbické pleso. During the MIE, the Zadná voda glacier covered 7 km2 of the area and featured a mean thickness of 48 m. The ELA of this glacier was 1433 m, determined by the area-altitude balance ratio (AABR) 1.6 method, which is a similar value to the LGM ELA calculated in the Western Tatra Mountains. The recessional stages were only recognized in the cirques area, where one or two generations of debris-covered glaciers and rock glaciers mark the final deglaciation of the study area.
Downloads
References
Anderson R.S., Dühnforth M., Colgan W. & Anderson L., 2012. Far-flung moraines: Exploring the feedback of glacial erosion on the evolution of glacier length. Geomorphology, 197, 269–285. https://doi.org/10.1016/j.geomorph.2012.08.018.
Barsch D., 1996. Rockglaciers. Springer, Berlin.
Baumgart-Kotarba M. & Kotarba A., 1997. Würm glaciation in the Biała Woda Valley, High Tatra Mountains. Studia Geomorphologica Carpatho-Balcanica, 31, 57–81.
Baumgart-Kotarba M., Bluszcz A. & Kotarba A., 2001. Age of Würm glaciation in the High Tatra Mts. In the light of 14C, TL and OSL dating versus geomorphological data. [in:] Methods of Absolute Chronology: 7th International Conference, 23–26th April 2001, Ustroń, Poland: book of abstracts, Gliwice, Politechnika Śląska, 55–56.
Benn D.I. & Hulton N.R.J., 2010. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computer Geoscience, 36, 605–610. https://doi.org/10.1016/j.cageo.2009.09.016.
Benn D.I. & Lehmkuhl F., 2000. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65–66, 15–29. https://doi.org/10.1016/S1040-6182(99)00034-8.
Benn D.I., Owen L.A., Osmaston H.A., Seltzer G.O., Porter S.C. & Mark B., 2005. Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International, 138–139, 8–21. https://doi.org/10.1016/j.quaint.2005.02.003.
Biely A., Beňuška P., Bezák V., Bujnovský A., Halouzka R., Ivanička J., Kohút M. et al., 1992. Geological Map of the Nízke Tatry Mountains 1: 50 000. Geologický ústav Dionýza Štúra, Bratislava.
Butrym J., Lindner L. & Okszos D., 1990. Formy rzeźby, wiek TL osadów i rozwój lodowców ostatniego zlodowacenia w Dolinie Małej Łąki (Tatry Zachodnie). Przegląd Geologiczny, 38, 20–26.
Chandler B.M.P., Lovell H., Boston C.M., Lukas S., Barr I.D., Benediktsson ĺ.Ö., Benn D.I. et al., 2018. Glacial geomorphological mapping: A review of approaches and frameworks for best practice. Earth-Science Reviews, 185, 806–846. https://doi.org/10.1016/j.earscirev.2018.07.015.
Clark P.U., Dyke A.S., Shakun J.D., Carlson A.E., Clark J., Wohlfarth B., Mitrovica J.X. et al., 2009. The Last Glacial Maximum. Science, 325(5941), 710–714. https://www.science.org/doi/10.1126/science.1172873.
Cuffey K. & Paterson W.S.B., 2010. The Physics of Glaciers. 4rd ed. Academic Press, USA.
Droppa A., 1972. Geomorfologické pomery Demänovskej doliny. Slovenský kras, 10, 9–46.
Dzierżek J., Lindner L. & Nitychoruk J., 1987. Rzeźba i osady czwartorzędowe Doliny Pięciu Stawów Polskich (Wysokie Tatry). Przegląd Geologiczny, 35(1), 8–15.
Dzierżek J., Nitychoruk J., Zreda-Gostyńska G. & Zreda M., 1999. Metoda datowania kosmogenicznym izotopem 36CI – nowe dane do chronologii glacjalnej Tatr Wysokich. Przegląd Geologiczny, 47(11), 987–992.
Engel Z., Braucher R., Traczyk A., Laetitia L. & Aster Team, 2014. 10Be exposure age chronology of the last glaciation in the Krkonoše Mountains, Central Europe. Gemorphology, 206, 107–121. https://doi.org/10.1016/j.geomorph.2013.10.003.
Engel Z., Mentlík P., Braucher R., Minár J., Léanni L. & Aster Team, 2015. Geomorphological evidence and 10Be exposure ages for the Last Glacial Maximum and deglaciation of the Velká and Malá Studená dolina valleys in the High Tatra Mountains, central Europe. Quaternary Science Reviews, 124, 106–123. https://doi.org/10.1016/j.quascirev.2015.07.015.
Engel Z., Mentlík P., Braucher R., Kŕížek M., Pluháčková M. & Aster Team, 2017. 10Be exposure age chronology of the last glaciation of the Roháčská Valley in the Western Tatra Mountains, central Europe. Geomorphology, 293, 130–142. https://doi.org/10.1016/j.geomorph.2017.05.012.
Evans I.S., 2021. Glaciers, rock avalanches and the ‘buzzsaw’ in cirque development: why mountain cirques are mainly glacial origin. Earth Surface Processes and Landforms, 46, 24–46. https://doi.org/10.1002/esp.4810.
Evans I.S. & Cox N.J., 1974. Geomorphometry and the operational definition of cirques. Area, 6, 150–153.
Evans I.S. & Cox N.J., 1995. The form of glacial cirques in the English Lake District, Cumbria. Zeitschrift für Geomorphologie N.F., 39(2), 175–202. https://doi.org/10.1127/zfg/39/1995/175.
Federici P.R. & Spagnolo M., 2004. Morphometric Analysis on the Size, Shape and Areal Distribution of Glacial Cirques in the Maritime Alps (Western French-Italian Alps). Geografiska Annaler: Series A, Physical Geography, 86, 235–248. https://doi.org/10.1111/j.0435-3676.2004.00228.x.
Federici P.R., Ribolini A. & Spagnolo M., 2017. Glacial history of the Maritime Alps from the Last Glacial Maximum to the Little Ice Age. Geological Society of London Special Publication, 433(1), 137–159. https://doi.org/10.1144/SP433.9
Fernández-Fernández M., Palacios D., García-Ruiz J.M., Andrés N., Schimmelpfennig I., Gómez-Villar A., Santos-González J. et al., 2017. Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: A case study in the Sierra de La Demanda, northern Spain. Quaternary Science Reviews, 170, 232–249. https://doi.org/10.1016/j.quascirev.2017.06.034.
Furbish D.J. & Andrews J.T., 1984. The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. Journal of Glaciology, 30(105), 199–211. https://doi.org/10.3189/s0022143000005931.
Gajdoš A. & Anstead L., 2013. The problems concerning occurence of glacial landforms on southern slopes of Low Tatra mountains in Slovakia. [in:] Herber V. (ed.), Fyzickogeografický sborník 11: Fyzická geografie a kulturní krajina v 21. Století: Příspěvky z 30. výroční konference Fyzickogeografické sekce České geografické společnosti konané 6. a 7. února 2013 v Brně, Masarykova univerzita, Brno, 40–44.
Gajdoš A. & Klaučo M., 2010. Doterajší stav výskumu glaciálnych foriem georeliéfu v Nízkych Tatrách [Resarch survey of the glacial forms of georelief in Low Tatras Mountains]. Geografická Revue, 6(1), 24–41.
Haeberli W., 1985. Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, 77, Eidgenössischen Technischen Hochschule, Zürich.
Halouzka R., Beňuška P. & Magalay J., 1997. Kvartér. [in:] Biely A. & Bezák V., Vysvetlivky ku geologickej mape Nízkych Tatier 1 : 50 000, Geologický ústav Dionýza Štúra, Geologická služba SR, Bratislava, 115–127.
Heyman B., Heyman J., Fickert T. & Harbor J., 2013. Paleo-climate of the central European uplands during the last glacial maximum based on glacier mass-balance modelling. Quaternary Research, 79(1), 49–54. https://doi.org/10.1016/j.yqres.2012.09.005.
Humlum O., 1988. Rock glacier appearance level and rock glacier initiation line altitude: a methodological approach to the study of Rock Glaciers. Arctic and Alpine Research, 20(2), 160–178. https://doi.org/10.2307/1551495.
Humlum O., 2000. The geomorphic significance of rock glaciers: estimates of rock glacier debris volumes and headwall recession rates in West Greenland. Geomorphology, 35(1–2), 41–67. https://doi.org/10.1016/S0169-555X(00)00022-2.
Kaplan M.R., Hein A.S., Hubbard A. & Lax S.M., 2009. Can glacial erosion limit the extent of glaciation? Geomorphology, 103(2), 172–179. https://doi.org/10.1016/j.geomorph.2008.04.020.
Kele F., 2007. Prírodné krásy Slovenska: Najvyššie vrchy. Dajama, Bratislava.
Kettner R., 1927. Předběžná zpráva o dosavadních geologických výzkumech v Nízkych Tatrách. Rozpravy České akademie věd a umění. Třída II, Matematicko-přírodovědecká, 36(4), 1–18.
Klimaszewski M., 1988. Rzeźba Tatr polskich. Państwowe Wydawnictwo Naukowe, Warszawa.
Kłapyta P., 2010. Przebieg deglacjacji Doliny Bystrej (Tatry Zachodnie, Słowacja) podczas ostatniego zlodowacenia w świetle analiz geomorfologicznych oraz datowania względnego form metodą młotka Schmidta. [in:] Kotarba A. (red.), Nauka a zarządzanie obszarem Tatr i ich otoczeniem. T. 1, Nauki o Ziemi: Materiały IV Konferencji Przyroda Tatrzańskiego Parku Narodowego a Człowiek, Zakopane, 14–16 października 2010, Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane, 63–68.
Kłapyta P., 2013. Application of Schmidt hammer relative age dating to Late Pleistocene moraines and rock glaciers in the Western Tatra Mountains, Slovakia. Catena, 111, 104–121. https://doi.org/10.1016/j.catena.2013.07.004.
Kłapyta P. & Zasadni J., 2017/2018. Research history on the Tatra Mountains glaciations. Studia Geomorphologica Carpatho-Balcanica, 51/52, 43–85.
Kłapyta P., Zasadni J., Pociask-Karteczka J., Gajda A. & Franczak P., 2016. Late Glacial and Holocene paleoenvironmental records in the Tatra Mountains, East-Central Europe, based on lake, peat bog and colluvial sedimentary data: A summary review. Quaternary International, 415(10), 126–144. https://doi.org/10.1016/j.quaint.2015.10.049.
Kłapyta P., Mîndrescu M. & Zasadni J., 2021a. Geomorphological record and equilibrium line altitude of glaciers during the last glacial maximum in the Rodna Mountains (eastern Carpathians). Quaternary Research, 100, 1–20. https://doi.org/10.1017/qua.2020.90.
Kłapyta P., Zasadni J., Dubis J. & Świąder A., 2021b. Glaciation in the highest parts of the Ukrainian Carpathians (Chornohora and Svydovets massifs) during the local last glacial maximum. Catena, 203, 105346. https://doi.org/10.1016/j.catena.2021.105346.
Kłapyta P., Bryndza M., Zasadni J. & Jasionek M., 2022. The lowest elevation Pleistocene glaciers in the Carpathians – The geomorphological and sedimentological record of glaciation in the Polonyna Rivna and Borzhava massifs (Ukrainian Carpathians). Geomorphology, 398, 108060. https://doi.org/10.1016/j.geomorph.2021.108060.
Kŕížek M. & Mida P., 2013. The influence of aspect and altitude on the size, shape and spatial distribution of glacial cirques in the High Tatras (Slovakia, Poland). Geomorphology, 198, 57–68. https://doi.org/10.1016/j.geomorph.2013.05.012.
Le Roy M., Deline P., Carcaillet J., Schimmelpfennig I. & Ermini M., 2017. 10Be exposure dating of the timing of Neoglacial glacier advances in the Ecrins-Pelvoux massif, southern French Alps. Quaternary Science Reviews, 178, 118–138. https://doi.org/10.1016/j.quascirev.2017.10.010.
Lindner L., Nitychoruk J. & Butrym J., 1993. Liczba i wiek zlodowaceń tatrzańskich w świetle datowań termoluminescencyjnych osadów wodnolodowcowych w dorzeczu Białego Dunajca [Problem of number and age of glaciations in the Tatra Mts. Against thermoluminescence dating of glaciofluvial sediments in the Biały Dunajec drainage basin]. Przegląd Geologiczny, 41(1), 10–21.
Lindner L., Dzierżek J., Marciniak B. & Nitychoruk J., 2003. Outline of Quaternary glaciation in the Tatra Mts.: their development, age and limits. Geological Quarterly, 47(3), 269–380.
Lukniš M., 1964. The course of the Last Glaciation of the Western Carpathians in relation to the Alps, and to the glaciation of Northern Europe. Geografický časopis, 16(2), 127–142.
Lukniš M., 1972. Reliéf. [in:] Lukniš M. a kol. (eds.), Slovensko 2: Príroda, Obzor, Bratislava, 139–145.
Lukniš M., 1973. Reliéf Vysokých Tatier a ich predpolia. Vydavatelstvo Slovenskej akadémie vied, Bratislava.
Lukniš M. & Plesník P., 1961. Nížiny, kotliny a pohoria Slovenska. Osveta, Bratislava.
Louček D., Michovšká J. & Trefná E., 1960. Zalednéní Nižkých Tater. Sborník Československé společnosti zeměpisné, 65, 326–352.
Maglay J. & Pristaš J., 2002. Kvartérny pokryv 1: 1 000 000. [in:] Miklós L. (ed.), Atlas krajiny Slovenskej republiky, Ministerstvo životného prostredia Slovenskej republiky, Bratislava, Slovenská agentúra životného prostredia, Banská Bystrica, 84.
Maglay J., Pristaš J., Kučera M. & Ábelová M., 2009. Geologická mapa kvartéru Slovenska. Genetické typy kvartérnych uloženín 1: 500 000. Štátny geologický ústav Dionýza Štúra, Bratislava.
Maglay J., Moravcová M., Šefčik P., Vlačiky M. & Pristaš J., 2011. Prehľadná geologická mapa kvartéru Slovenskej republiky 1 : 200 000. Štátny geologický ústav Dionýza Štúra, Bratislava.
Makos M. & Nowacki Ł., 2009. Rekonstrukcja geometrii powierzchni lodowców z maksimum ostatniego zlodowacenia (LGM) w polskich Tatrach Wysokich (zlewnie Roztoki i Rybiego Potoku) [Reconstruction of surface geometry of the last glacial maximum (LGM) glaciers in the Polish High Tatra Mts. (drainage basins of Roztoka and Rybi Potok)]. Przegląd Geologiczny, 57(1), 72–79.
Makos M., Nitychoruk J. & Zreda M., 2013a. Deglaciation chronology and paleoclimate of the Pięciu Stawów Polskich/Roztoki Valley, high Tatra Mountains, Western Carpathians, since the Last Glacial Maximum, inferred from 36Cl exposure dating and glacier-climate modeling. Quaternary International, 293, 63–78. https://doi.org/10.1016/j.quaint.2012.01.016.
Makos M., Nitychoruk J. & Zreda M., 2013b. The Younger Dryas climatic conditions in the Za Mnichem Valley (Polish High Tatra Mountains) based on exposure‐age dating and glacier‐climate modelling. Boreas, 42(3), 745–761. https://doi.org/10.1111/j.1502-3885.2012.00298.x.
Makos M., Dzierżek J., Nitychoruk J. & Zreda M., 2014. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum. Quaternary Research, 82(1), 1–13. https://doi.org/10.1016/j.yqres.2014.04.001.
Makos M., Rinterknecht V., Braucher R. & Żarnowski M., 2016. Glacial chronology and palaeoclimate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene. Quaternary Science Reviews, 134, 74–91. https://doi.org/10.1016/j.quascirev.2016.01.004.
Makos M., Rinterknecht V., Braucher R., Tołoczko-Pasek A. & Aster Team, 2018. Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains – Revised deglaciation chronology based on the 10Be exposure age dating. Quaternary Science Reviews, 187, 130–156. https://doi.org/10.1016/j.quascirev.2018.03.006.
Mazúr E. & Kvitkovič J., 1980. Kvartér 1 : 500 000. [in:] Atlas Slovenskej socialistickej republiky, Slovenská akadémia vied, Slovenský úrad geodézie a kartografie, Bratislava, 26–27.
Mazúr E., Činčura J. & Kvitkovič J., 1980. Geomorfológia 1 : 500 000. [in:] Atlas Slovenskej socialistickej republiky, Slovenská akadémia vied, Slovenský úrad geodézie a kartografie, Bratislava, 46–47.
Mazúr E., Činčura J. & Kvitkovič J., 2002. Geomorfologické pomery 1 : 500 000. [in:] Miklós L. (ed.), Atlas krajiny Slovenskej republiky, Ministerstvo životného prostredia Slovenskej republiky, Bratislava, Slovenská agentúra životného prostredia, Banská Bystrica, 86–87 [after: Mazúr E., Činčura J. & Kvitkovič J.: Geomorfológia 1 : 500 000. [in:] Atlas Slovenskej socialistickej republiky, Slovenská akadémia vied, Slovenský úrad geodézie a kartografie, Bratislava, 46–47].
Mentlik P., Engel Z., Braucher R., Léanni L. & Aster Team, 2013. Chronology of the Late Weichselian glaciation in the Bohemian Forest in Central Europe. Quaternary Science Reviews, 65, 120–128. https://doi.org/10.1016/j.quascirev.2013.01.020.
Mîndrescu M., 2016. Geomorfometria circurilor glaciare din Carpaţii Româneşti. Universitatea „Ştefan cel Mare”, Suceava.
Mîndrescu M. & Evans I.S., 2014. Cirque form and development in Romania: allometry and the buzzsaw hypothesis. Geomorphology, 208, 117–136. https://doi.org/10.1016/j.geomorph.2013.11.019.
Nemčok A. & Mahr T., 1974. Kamenné ľadovce v Tatrách. Geografický časopis, 26(4), 359–374.
Oien R.P., Rea B.R., Spagnolo M., Barr I.D. & Bingham R.G., 2022. Testing the area-altitude balance ratio (AABR) and accumulation-area ratio (AAR) methods of calculating glacier equilibrium-line altitudes. Journal of Glaciology, 68(268), 357–368. https://doi.org/10.1017/jog.2021.100.
Osmaston H., 2005. Estimates of glacier equilibrium line altitudes by the area × altitude, the area × altitude balance ratio and the area × altitude balance index methods and their validation. Quaternary International, 138–139, 22–31. https://doi.org/10.1016/j.quaint.2005.02.004.
Palacios D., Stokes C.R., Phillips F.M., Clagued J.J., Alcalá-Reygosae J., Andrés N., Angel I. et al., 2020. The deglaciation of the Americas during the Last Glacial Termination. Earth-Science Reviews, 203, 103113. https://doi.org/10.1016/j.earscirev.2020.103113.
Pawłowski S., 1936. Les Karpates à l’époque glaciaire. [in:] Comptes rendus du Congrès International de Gèographie, Varsovie 1934. T. 2, Travaux de la Section 2 (Cartographie physique), Dépôt général Kasa im. Mianowskiego, Varsovie, 89–141.
Pedersen V.K. & Egholm D.L., 2013. Glaciations in response to climate variations preconditioned by evolving topography. Nature, 493(7431), 206–210. https://doi.org/10.1038/nature11786.
Pellitero R., Rea B.R., Spagnolo M., Bakk J., Hughes P., Ivy-Ochs S., Lukas S. & Ribolin A., 2015. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computer & Geoscience, 82, 55–62. https://doi.org/10.1016/j.cageo.2015.05.005.
Rea B.R., 2009. Defining modern day area-altitude balance ratios (AABRs) and their use in glacier-climate reconstructions. Quaternary Science Reviews, 28, 237–248. https://doi.org/10.1016/j.quascirev.2008.10.011.
Roth S., 1885. Spuren einstiger Gletscher in der niederen Tátra. Földtani Közlöny, 15, 558–560.
Ruszkiczay-Rüdiger Z., Kern Z., Urdea P., Braucher R., Balazs M., Schimmelphennig I. & Aster Team, 2016. Revised deglaciation history of the Pietrele-Stânişoara glacial complex, Retezat Mts, Sounthern Carpathians, Romania. Quaternary International, 415, 2016–2029. https://doi.org/10.1016/j.quaint.2015.10.085.
Ruszkiczay-Rüdiger Z., Madarász B., Kern Z., Urdea P., Braucher R. & Aster Team, 2017. Late Pleistocene deglaciation and paleo-environment in the Retezat Mountains, Southern Carpathians. Geophysical Research Abstracts, 19, 2755.
Sawicki L., 1910. Eiszeitspuren in der Niederen Tatra. Globus.
Scotti R., Brardinoni F., Crosta G.B., Cola G. & Mair V., 2017. Time constraints for post-LGM landscape response to deglaciation in Val Viola, Central Italian Alps. Quaternary Science Reviews, 177, 10–33. https://doi.org/10.1016/j.quascirev.2017.10.011.
Škvarček A., 1980. Pleistocénne zal’adnenie bazénu Vel’kej Oružnej v Nízkych Tatrách. Acta Facultatis Rerum Naturalium Universitatis Comenianae, Geographica, 18, 13–32.
Škvarček A., 1986. Niektoré aspekty pleistocénneho zal’adnenia Král’ovohoľských Tatier. Geografický časopis, 38(2–3), 236–244.
Urdea P., Ardelean F., Ardelean M. & Onaca A., 2022. Glacial landscapes of the Romanian Carpathians. [in:] Palacios D., Hughes Ph.D., García-Ruiz J.M. & de Andrés N. (eds.), European Glacial Landscapes: Maximum Extent of Glaciations, Elsevier, 109–114. https://doi.org/10.1016/B978-0-12-823498-3.00031-5.
Vitásek F., 1924. Naše hory ve věku ledovém. Sborník Československé společnosti zeměpisné, XX(21), Praha.
Volko-Starohorský J., 1943. Dodatky k poznátkam “Šúlkovského” a “Lúčanského” ľadovca v štvrtovrší v Demänovskej doline. Múzeum slovenského krasu, Liptovský Sv. Mikuláš.
Zasadni J. & Kłapyta P., 2014. The Tatra Mountains during the last glacial maximum. Journal of Maps, 10, 440–456. https://doi.org/10.1080/17445647.2014.885854.
Zasadni J. & Kłapyta P., 2016. From valley to marginal glaciation in alpine-type relief: Lateglacial glacieradvances in the Pięć Stawów Polskich/Roztoka Valley, High Tatra Mountains, Poland. Geomorphology, 253, 406–424. https://doi.org/10.1016/j.geomorph.2015.10.032.
Zasadni J., Kłapyta P. & Świąder A., 2015. Lodowce maksimum ostatniego zlodowacenia i osady starszych zlodowaceń. [in:] Dąbrowska K. & Guzik M. (red.), Atlas Tatr: przyroda nieożywiona, Tatrzański Park Narodowy, Zakopane.
Zasadni J., Kłapyta P., Broś E., Ivy-Ochs S., Świąder A., Christl M. & Balážovičová L., 2020. Latest Pleistocene glacier advances and post-Younger Dryas rock glacier stabilization in the Mt. Kriváň group, High Tatra Mountains, Slovakia. Geomorphology, 358, 107093. https://doi.org/10.1016/j.geomorph.2020.107093.
Zasadni J., Kłapyta P., Kałuża P. & Świąder A., 2021. Evolution of the Białka valley Pleistocene moraine complex in the High Tatra Mountains. Catena, 207, 105704, 1–19. https://doi.org/10.1016/j.catena.2021.105704.
Zasadni J., Kłapyta P., Kałuża P. & Makos M., 2022a. The Tatra Mountains: glacial landforms prior to the Last Glacial Maximum. [in:] Palacios D., Hughes Ph.D., García-Ruiz J.M. & Andrés N. (eds.), European Glacial Landscapes: Maximum Extent of Glaciations, Elsevier, 271–275. https://doi.org/10.1016/B978-0-12-823498-3.00059-5.
Zasadni J., Kłapyta P. & Makos M., 2022b. The Tatra Mountains: glacial landforms from the Last Glacial Maximum. [in:] Palacios D., Hughes Ph.D., García-Ruiz J.M. & Andrés N. (eds.), European Glacial Landscapes: Maximum Extent of Glaciations, Elsevier, 435–440. https://doi.org/10.1016/B978-0-12-823498-3.00049-2.
Zejszner [Zeuschner] L., 1856. Über eine alte Längenmoräne im Thale des Biały Dunajec bei dem Hochofen von Zakopane in der Tatra. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 21, 259–262.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)