Dendrochronological record of soil creep and landslide activity – the comparison of tree-ring eccentricity and compression wood (examples from the Kamienne Mts., Poland)


  • Katarzyna Sitko University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Sosnowiec, Poland
  • Małgorzata Wistuba University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Sosnowiec, Poland
  • Ireneusz Malik University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Sosnowiec, Poland
  • Marek Krąpiec AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Krakow, Poland
  • Ruide Yu Chinese Academy of Sciences, Xinjiang Institute of Ecology and Geography, Xinjiang, China
  • Haiyan Zhang Chinese Academy of Sciences, Xinjiang Institute of Ecology and Geography, Xinjiang, China



dendrochronology, landslide, soil creep, compression wood, tree-ring eccentricity


Forested mountain slopes can be simultaneously affected by soil creep and landslide activity, both of which cause the tilting of tree stems, with the result that their dendrochronological record of tree-ring eccentricity and compression wood is potentially similar. There is a need to identify similarities and differences in these records and thus our research aimed to compare patterns of eccentricity and compression wood developed by trees under the impact of soil creep and landslides. We sampled trees growing on a landslide and creeping slopes in the Kamienne Mts., with 21 Norway spruce trees were sampled on each site. We found several main differences between the dendrochronological record of landslide activity and soil creep. On the landslide we found larger number of dendrochronological events, stronger and more variable eccentricity and a similar number of upslope and downslope events. On creeping slopes, upslope eccentricity events predominate, and the number of eccentricity events dated in all trees increases in time. We also compared the utility of eccentricity and compression wood for dating mass movements. They differ in their sensitivity to stem tilting. Thus, in analyses of landslide activity and soil creep activity, it is recommended to include both wood anatomy features.


Download data is not yet available.


Awdankiewicz M., 1999. Volcanism in a late Variscan intramontane trough: Carboniferous and Permian volcanic centres of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica, 32, 13–47.

Alestalo J., 1971. Dendrochronological interpretation of geomorphic processes. Fennia – International Journal of Geography, 105 (1), 1–139.

Auzet A.V. & Ambroise B., 1996. Soil creep dynamics, soil moisture and temperature conditions on a forested slope in the granitic Vosges Mountains, France. Earth Surface Processes and Landforms, 21, 531-542.

Baroň I., Řehánek T., Vošmik J., Musel V. & Kondrová L., 2011. Report on a recent deep-seated landslide at Gírová Mt., Czech Republic, triggered by a heavy rainfall: The Gírová Mt., Outer West Carpathians; Czech Republic. Landslides, 8 (3), 355–361.

Bollati I., Della Seta M., Pelfini M., Del Monte M., Fredi P. & Lupia Palmieri E., 2012. Dendrochronological and geomorphological investigations to assess water erosion and mass wasting processes in the Apennines of Southern Tuscany (Italy). Catena, 90, 1–17.

Booth A.M., Roering J.J. & Perron J.T., 2009. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109, 132–147.

Braam R.R., Weiss E.E.J. & Burrough P.A., 1987. Spatial and temporal analysis of mass movement using dendrochronology. Catena Supplement, 9, 573–584.

Burda J., 2011. Spatio-temporal activity of mass movements in the Krušné Hory Mountains (Czech Republic): dendrogeomorphological case study. AUC Geographica, 46 (2), 15–30.

Carrara P. & O'Neill J.M., 2003. Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana, USA. Quaternary Research, 59, 25–35.

Carrara A., Crosta G. & Frattini P., 2003. Geomorphological and historical data in assessing landslide hazard. Earth Surface Processes and Landforms, 28, 1125–1142.

Carson M.A. & Kirkby M.J., 1972. Hillslope Form and Process. Cambridge University Press.

Chigira M., Wu X., Inokuchi T. & Wang G., 2010. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology, 118, 225–238.

Corominas J. & Moya J., 2010. Contribution of dendrochronology to the determination of magnitude–frequency relationships for landslides. Geomorphology, 124, 137–149.

Cropper J.P., 1979. Tree-ring skeleton plotting by computer. Tree-Ring Bulletin, 39, 47–60.

Culling W.E.H., 1963. Soil creep and the development of hillside slopes. The Journal of Geology, 71 (2), 127-161.

Denneler B. & Schweingruber F.H., 1993. Slow mass movement. A dendrogeomorphological study in Gams, Swiss Rhine Valley. Dendrochronologia, 11, 55–67.

Harker R.I., 1996. Curved tree trunks: indicators of soil creep and other phenomena. The Journal of Geology, 104, 351–358.

Heimsath, A. & Jungers M.C., 2013. Processes, transport, deposition and landforms: quantifying creep. In: Shroder J. (Editor in Chief), Marston R.A. & Stoffel M. (eds), Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 7, Mountain and Hillslope Geomorphology, 138–151.

Hong T., Bai S.B., Wang J. & Zhang Z.G., 2012. Reconstruct the activity years of Jiufangshan landslide by means of tree-rings. Journal of Mountain Science, 30, 57–64.

Hungr O., Evans S.G., Bovis M. & Hutchinson J.N., 2001. Review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7 (3), 221–238.

Imaizumi F., Sidle R.C., Togari-Ohta A. & Shimamura M., 2013. Long-term observation of soil creep activity around a landslide scar. Transactions, Japanese Geomorphological Union. Japanese Geomorphological Union, Kyoto, Japan, 34 (2), 129–146.

Jaboyedoff M., Michoud C., Derron M.H., Voumard J., Leibundgut G., Sudmeier-Rieux K., Nadim F. & Leroi E., 2016. Human-induced landslides: toward the analysis of anthropogenic changes of the slope environment. In: Avresa S., Cascini L., Picarelli L. & Scavia C. (eds), Landslides and engineered slopes. Experience, theory, and practice, CRC Press, 217–232.

Kojs P., Malik I. & Wistuba M., 2012. Mechanizmy wzrostu ekscentrycznego i formowania się drewna reakcyjnego w kontekście badań dendrogeomorfologicznych – wprowadzenie do nowej hipotezy (in Polish). Studia i Materiały CEPL w Rogowie, 14, 1 (30), 147-156.

Li W.L., Huang R., Tang C., Xu Q. & van Westen C., 2013. Co-seismic landslide inventory and susceptibility mapping in the 2008 Wenchuan earthquake disaster area, China. Journal of Mountain Science, 10 (3), 339-354.

Lopez-Saez J., Corona C., Stoffel M., Schoeneich P. & Berger F., 2012a. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology, 138, 189–202.

Lopez-Saez J., Corona C., Stoffel M., Astrade L., Berger F. & Malet J.P., 2012b. Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: The Bois Noir landslide, southeast French Alps. Landslides, 9, 189–203.

Lopez-Saez J., Morel P., Corona C., Bommer-Denns B., Schlunegger F., Berger F. & Stoffel M., 2017. Tree-ring reconstruction of reactivation phases of the Schimbrig landslide (Swiss Alps). Géomorphologie: relief, processus, environnement, 23, 265–276.

Łuszczyńska K., Wistuba M. & Malik I., 2017. Dendrochronology as a source of data for landslide activity maps – an example from Beskid Żywiecki Mountains (Western Carpathians, Poland). Environmental & Socio-economic Studies, 5 (3), 40–46.

Łuszczyńska K., Wistuba M., Malik I., Krąpiec M. & Szypuła B., 2018. Dendrochronological dating as the basis for developing a landslide hazard map – an example from the Western Carpathians, Poland. Geochronometria, 45, 173–184.

Malamud B.D., Turcotte D.L., Guzzetti F. & Reichenbach P., 2004. Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29, 687–711.

Malik I. & Wistuba M., 2012. Dendrochronological methods for reconstructing mass movements – an example of landslide activity analysis using tree-ring eccentricity. Geochronometria, 39, 180–196.

Malik I., Wistuba M., Migoń P. & Fajer M., 2016. Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees (Picea abies Karst.) – an example from the Kamienne Mts. (Sudetes Mts., Central Europe). Geochronometria, 43, 24–37.

Malik I., Wistuba M., Tie Y., Owczarek P., Woskowicz-Ślęzak B. & Łuszczyńska K., 2017. Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi basin, Hengduan Mts, China – A hazard assessment. Applied Geography, 87, 54–65.

Martin Y., 2000. Modelling hillslope evolution: linear and nonlinear transport relations. Geomorphology, 34, 1–21.

Massey C.I., Petley D.N. & McSaveney M.J., 2013. Patterns of movement in reactivated landslides. Engineering Geology, 159, 1–19.

Matsuura S., Asano S., Okawamoto T. & Takeuchi T., 2003. Characteristics of the displacement of a landslide with shallow sliding surface in a heavy snow district of Japan. Engineering Geology, 69, 15-35.

Matsuzaki J., Masumori M. & Tange T., 2006. Stem phototropism of trees: a possible significant factor in determining stem inclination on forest slopes. Annals of Botany, 98 (3), 573–581.

Matuszkiewicz J.M., 2001. Zbiorowiska leśne Polski, PWN, Warszawa (in Polish).

Migoń P., Pánek T., Malik I., Hradecký J., Owczarek P. & Šilhán K., 2010. Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology, 124, 200–214.

Migoń P., Kacprzak A., Malik I., Kasprzak M., Owczarek P., Wistuba M. & Pánek T., 2014. Geomorphological, pedological and dendrochronological signatures of a relict landslide terrain, Mt Garbatka (Kamienne Mts), SW Poland. Geomorphology, 219, 213–23.

Montrasio L. & Valentino R., 2007. Experimental analysis and modeling of shallow landslides. Landslides, 4, 291–296.

Noferini L., Pieraccini M., Mecatti D., Macaluso G., Atzeni C., Mantovani M., Marcato G., Pasuto A., Silvano S. & Tagliavini F., 2007. Using GB-SAR technique to monitor slow moving landslide. Engineering Geology, 95 (3–4), 88–98.

Papadopulos A.M., Mertzanis A. & Pantera A., 2007. Dendrogeomorphological observations in a landslide on Tymfristos mountain in Central Greece. In: Stokes A., Spanos I., Norris J.E. & Cammeraat E., (eds), Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. Developments in Plant and Soil Sciences, Springer, Dordrecht, 103, 223–230.

Papciak T., Malik I., Krzemień K., Wistuba M., Gorczyca E., Wrońska-Wałach D. & Sobucki M., 2015. Precipitation as a factor triggering landslide activity in the Kamień massif (Beskid Niski Mts, Western Carpathians). Bulletin of Geography. Physical Geography Series, 8, 5–17.

Parizek E.J. & Woodruff J.F., 1957. Mass wasting and the deformation of trees. American Journal of Science, 255, 63–70.

Pawlik Ł.& Šamonil P., 2018. Soil creep: The driving factors, evidence and significance for biogeomorphic and pedogenic domains and systems – A critical literature review. Earth Science Reviews, 178, 257–278.

Petley D.N. & Allison R.J., 1997. The mechanics of deep-seated landslides. Earth Surface Processes and Landforms, 22, 747–758.<747::AID-ESP767>3.0.CO;2-%23.

Pińskwar I., Choryński A., Graczyk, D. & Kundzewicz Z.W., 2019. Observed changes in extreme precipitation in Poland: 1991-2015 versus 1961-1990. Theoretical and Applied Climatology, 135 (1-2), 773–787.

Polemio M. & Petrucci O., 2000. Rainfall as a landslide triggering factor: an overview of recent international research, In: Bromhead E., Dixon N. &, Ibsen M-L (eds), Landslides in Research, Theory and Practice, Thomas Telford, London, 3, 1219–1226.

Quesada-Román A., Fallas-López B., Hernández-Espinoza K., Stoffel M. & Ballesteros-Cánovas J. A., 2019. Relationships between earthquakes, hurricanes, and landslides in Costa Rica. Landslides, 16 (8), 1539–1550.

Ruelle J., 2014. Morphology, Anatomy and Ultrastructure of Reaction Wood. In: Gardiner B., Barnett J., Saranpää P. & Gril J. (eds), The Biology of Reaction Wood. Springer Series in Wood Science, Springer, Berlin, Heidelberg, 13–35.

Sabir M.A., Umar M., Farooq M. & Faridullah F., 2016. Computing soil creep velocity using dendrochronology. Bulletin of Engineering Geology and the Environment, 75, 1761–1768.

Saunders I. & Young A., 1983. Rates of surface processes on slopes, slope retreat and denudation. Earth Surface Processes and Landforms, 8 (5), 473–501.

Shroder Jr. J.F., 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research, 9 (2), 168–185.

Šilhán K., 2015. Can tree tilting indicate mechanisms of slope movement? Engineering Geology, 199, 157–164.

Šilhán K., 2017. Dendrogeomorphic chronologies of landslides: dating of true landslide movements? Earth Surface Processes and Landforms, 42, 2109–2118.

Šilhán K., Tichavský R., Škarpich V., Břežný M. & Stoffel M., 2018. Regional, tree-ring based chronology of landslides in the Outer Western Carpathians. Geomorphology, 321, 33–44.

Šilhán K., Klimeš J. & Tichavský R., 2019. The sensitivity of dendrogeomorphic approaches to assessing landslide movements. Geomorphology, 347, 106869.

Šilhán K., Tichavský R., Fabiánová A., Chalupa V., Chalupová O., Škarpich V. & Tolasz R., 2019. Understanding complex slope deformation through tree-ring analyses. Science of the Total Environment, 665, 1083–1094.

Stefanini M. C. 2004. Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronology. Geomorphology, 63, 191–202.

Timell T.E., 1986. Compression Wood in Gymnosperms. Springer – Verlag, New York.

Wiedenhoeft A.C., 2013. Structure and Function of Wood. In: Rowell R.M. (ed), Handbook of wood Chemistry and Wood Composites, CRC Press Taylor and Francis Group, Boca Raton, 9–32.

Wistuba M., Malik I., Gärtner H., Kojs P. & Owczarek P., 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe). Catena, 111, 41–55.

Wistuba M., Malik I., Wójcicki K. & Michałowicz P., 2015. Coupling between landslides and eroding stream channels reconstructed from spruce tree rings (examples from the Carpathians and Sudetes – Central Europe). Earth Surface Processes and Landforms, 40, 293–312.

Wistuba M., Malik I., Krzemień K., Gorczyca E., Sobucki M., Wrońska-Wałach D. & Gawior D., 2018. Can low-magnitude earthquakes act as a triggering factor for landslide activity? Examples from the Western Carpathian Mts, Poland. Catena, 171, 359–375.

Wistuba M., Malik I. & Badura J., 2019. Tree rings as an early warning against catastrophic landslides: assessing the potential of dendrochronology for determining slope stability. Dendrochronologia, 53, 82–94.

Wistuba M., Malik I., Gorczyca E. & Ślęzak A., 2021. Establishing regimes of landslide activity – Analysis of landslide triggers over the previous seven decades (Western Carpathians, Poland). Catena, 196, 104888.

Yuan R.M., Tang C.L. & Deng Q.H., 2015. Effect of the acceleration component normal to the sliding surface on earthquake-induced landslide triggering. Landslides, 12, 335–344.

Yumoto M., Ishida S. & Fukazawa K., 1983. Studies on the formation and structure of the compression wood cells induced by artifactual initiation in young trees of Picea glauca. IV. Gradation of the severity of compression wood tracheids. Research Bulletins of the College Experiment Forests, 40, 409–454.

Zhou S., Chen G. & Fang L., 2016. Distribution pattern of landslides triggered by the 2014 Ludian earthquake of China: implications for regional threshold topography and the Seismogenic fault identification. ISPRS International Journal of Geo-Information 5 (4), 46.




How to Cite

Sitko, K., Wistuba, M., Malik, I., Krąpiec, M., Yu, R., & Zhang, H. (2022). Dendrochronological record of soil creep and landslide activity – the comparison of tree-ring eccentricity and compression wood (examples from the Kamienne Mts., Poland). Geology, Geophysics and Environment, 48(2), 133–146.