Mineralogical characteristics of the heterolithic formations from the Carpathian Foredeep Miocene sediments, south-eastern Poland





Carpathian Foredeep, heteroliths, lithotypes, mineralogical composition, cation exchange capacity (CEC)


Heterolithic complexes from the Carpathian Foredeep are a subject of growing attention as many natural gas accumulations of industrial importance have been discovered in such formations during the last decades. The aim of the presented work was to determine lithotypes of different lithology and mineralogical composition in the heterolithic sequences. Individual lithotypes were distinguished of macroscopic observations of cores, X-ray diffraction analysis (XRD) and X-ray fluorescence method (XRF). Preliminary distinction of the lithotypes was based on macroscopic observations of the core samples. Correlation plots between the contents of particular minerals (XRD analyses) and corresponding elements (XRF analyses) were used for verification of the lithotypes distinguished on the basis of macroscopic observations. Swelling properties of the investigated rocks were determined using the cation exchange capacity (CEC) values. The following lithotypes were identified: medium- to fine-grained sandstones, fine- to very fine-grained sandstones, clayey sandstones, sand-dominated heteroliths, heteroliths with equal proportions of sandstones and mudstones, mud-dominated heteroliths, mudstones, clayey shales. Such division provides a basis for precise petrophysical characterization of the analyzed profiles, that is assignment of particular petrophysical parameters values to individual lithotypes. More reliable petrophysical parameters in the geophysical interpretation of heterolithic sequences allow for a more precise determination of zones characterized by good reservoir parameters.


Download data is not yet available.


AFNOR NFX31-130, 1999. Qualité des sols – Méthodes chimiques – Détermination de la capacité d’échange cationique (CEC) et des cations extractibles.

Alexandrowicz S.W., Garlicki A. & Rutkowski J., 1982. Podstawowe jednostki litostratygraficzne miocenu zapadliska przedkarpackiego. Kwartalnik Geologiczny, 26, 470–471.

Badics B. & Vető I., 2012. Source rocks and petroleum systems in the Hungarian part of the Pannonian Basin: The potential for shale gas and shale oil plays. Marine and Petroleum Geology, 31, 53–69. https://doi.org/10.1016/j.marpetgeo.2011.08.015.

Bardon Ch., 1983. Recommendations pour la détermination experimentale de la capacité d’échange de cations des milieu argileux. Revue de l’Institut Francais du Petrolé, 38, 621–626.

Bartha A., Balázs A. & Szalay Á., 2018. On the tectono-stratigraphic evolution and hydrocarbon systems of extensional back-arc basins: inferences from 2D basin modelling from the Pannonian basin. Acta Geodaetica et Geophysica, 53, 369–394. https://doi.org/10.1007/s40328-018-0225-0.

Craigie N., 2018. Principles of Elemental Chemostratigraphy. A Practical User Guide. Advances in Oil and Gas Exploration and Production. https://doi.org/10.1007/978-3-319-71216-1.

Corbett P.W.M., Jensen J.L. & Sorbie K.S., 1998. A review of upscaling and cross-scaling issues in core and log data interpretation and prediction. [in:] Harvey P.K. & Lovell M.A. (eds.), Core-Log Integration, Geological Society Special Publication, 136, Geological Society, London, 9–16.

Donselaar C.R. & Geel M.E., 2007. Facies architecture of heterolithic tidal deposits: The Holocene Holland Tidal Basin. Netherlands Journal of Geosciences, 86, 389–402. https://doi.org/10.1017/S001677460002360X.

Dudek T. & Środoń J., 1996. Identification of illite/smectite by X-ray powder diffraction taking into account the lognormal distribution of crystal thickness. Geologica Carpathica Clays, 5(1), 21–32.

Enderlin M.B., Hansen D.K.T. & Hoyt B.R., 1991. Rock volumes: Considerations for relating well log and core data. [in:] Lake L.W., Carroll H.B. & Wesson T.C. (eds.), Reservoir Characterization II, Academic Press, San Diego, 277–288.

Ghosh P., Sarkar S. & Maulik P., 2006. Sedimentology of a muddy alluvial deposit: Triassic Denwa Formation, India. Sedimentary Geology, 191, 3–36. https://doi.org/10.1016/j.sedgeo.2013.12.004.

Golonka J. & Picha F. J. (eds.), 2006. The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. AAPG Memoir, 84, American Association of Petroleum Geologists, Tulsa, 221–258. https://doi.org/10.1306/985610M843070.

Golonka J., Pietsch K. & Marzec P., 2011. Structure and plate tectonic evolution of the northern Outer Carpathians. [in:] Closson D. (ed.), Tectonics, INTECH, Rijeka, Croatia, 65–92.

Gupta R., Johnson H. & Myking B., 1996. Reservoir Characterization of Thinly Laminated Heterolithic Facies within Shallow-Marine Sand Bodies. AAPG Search and Discovery Article #90951, AAPG International Conference and Exhibition, Caracas, Venezuela.

Iqbal M.A., Rezaee R., Laukamp C., Pejcic B. & Smith G., 2022. Integrated sedimentary and high-resolution mineralogical characterisation of Ordovician shale from Canning Basin, Western Australia: Implications for facies heterogeneity evaluation. Journal of Petroleum Science and Engineering, 208, 109347. https://doi.org/10.1016/j.petrol.2021.109347.

Jackson M.D., Muggeridge A.H., Yoshida S. & Johnson H.D., 2003. Upscaling Permeability Measurements within Complex Heterolithic Tidal Sandstones. Mathematical Geology, 35(5), 499–520. https://doi.org/10.1023/A:1026236401104.

Jackson M.D., Yoshida S., Muggeridge A.H. & Johnson H.D., 2005. Three-dimensional reservoir characterization and flow simulation of heterolithic tidal sandstones. AAPG Bulletin, 89, 507–528. https://doi.org/10.1306/11230404036.

Jankowski L., 2015. Nowe spojrzenie na budowę geologiczną Karpat: ujęcie dyskusyjne. Prace Naukowe Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego, 202, INiG-PIB, Kraków.

Jankowski L., Kopciowski R., Ryłko W., Danysh V., Tsarnenko P.N. & Hnylko O., 2012. Lithostratigraphic correlation of the Outer Carpathian borderlands of Poland, Ukraine, Slovakia and Romania. Biuletyn Państwowego Instytutu Geologicznego, 449, 87–98.

Jasionowski M., 1997. Zarys litostratygrafii osadów mioceńskich wschodniej części zapadliska przedkarpackiego. Biuletyn Państwowego Instytutu Geologicznego, 375, 43–59.

Király A., Milota K., Magyar I. & Kiss K., 2010. Tight gas exploration in the Pannonian Basin. [in:] Vining B.A. & Pickering S.C. (eds.), Petroleum Geology: From Mature Basins to New Frontiers: Proceedings of the 7th Petroleum Geology Conference, Geological Society Petroleum Geology Conference Series, 7(1), 1125, Geological Society, London, 1125–1129. https://doi.org/10.1144/0071125.

Klaja J. (research team leader), 2019. Opracowanie nowej metodyki dla formacji heterolitowych miocenu zapadliska przedkarpackiego w zakresie badań laboratoryjnych i interpretacji profilowań geofizycznych. Archive of the Oil and Gas Institute – National Research Institute, Kraków, Poland [unpublished study].

Kotarba M.J., Peryt T.M. & Koltun Y.V., 2011 Microbial Gassystem and Prospectives of Hydrocarbon Exploration in Miocene Strata of the Polish and Ukrainian Carpathian Foredeep. Annales Societatis Geologorum Poloniae, 81, 523–548.

Kováč M., Nagymarosy A., Oszczypko N., Ślączka A., Csontos L., Marunteanu M., Matenco L. & Márton E., 1998. Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. [in:] Rakúš M. (ed.), Geodynamic development of the Western Carpathians, Geological Survey of Slovak Republic (GSSR), Bratislava, 189–217.

Kováč M., Andreyeva-Grigorovich A., Bajraktarević Z., Brzobohatý R., Filipescu S., Fodor L., Harzhauser M. et al., 2007. Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geologica Carpathica, 58, 579–606.

Kowalska S., 2013. Quantitative analysis of the mineral composition of rocks containing clay minerals by Rietveld method. Nafta-Gaz, 69(12), 894–902.

Krzywiec P., Wysocka A., Oszczypko N., Mastalerz K., Papiernik B., Wróbel G., Oszczypko-Clowes M. et al., 2008. Ewolucja utworów mioceńskich zapadliska przedkarpackiego w rejonie Rzeszowa (obszar zdjęcia sejsmicznego 3D Sokołów – Smolarzyny). Przegląd Geologiczny, 56(3), 232–244.

Lettley C.D. & Pemberton S.G., 2015. Speciation of McMurray Formation Inclined Heterolithic Strata: Varying Depositional Character Along a Riverine Estuary System. AAPG Search and Discovery Article #51067(2015).

Lis P. & Wysocka A., 2012. Middle Miocene deposits in Carpathian Foredeep: Facies analysis and implications for hydrocarbon reservoir prospecting. Annales Societatis Geologorum Poloniae, 82, 239–253.

Łaba-Biel A., Kwietniak A. & Urbaniec A., 2020. Seismic Identification of Unconventional Heterogenous Reservoirs Based on Depositional History – A Case Study of the Polish Carpathian Foredeep. Energies, 13, 6036. https://doi.org/10.3390/en13226036.

Maksym A., Baszkiewicz A., Gregosiewicz Z., Liszka B. & Zdanowski P., 2001. Środowiska sedymentacji i właściwości zbiornikowe utworów najwyższej jury i kredy dolnej rejonu Brzezówka-Zagorzyce na tle budowy geologicznej S części zapadliska przedkarpackiego. Przegląd Geologiczny, 49(5), 401–407.

Malvić T., 2012. Review of Miocene shallow marine and lacustrine depositional environments in Northern Croatia. Geological Quarterly, 56(3), 493–504. https://doi.org/10.7306/gq.1035.

Malvić T., Sučić A., Cvetković M., Resanović F. & Velić J., 2014. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs. Central European Journal of Geosciences, 6, 182–194. https://doi.org/10.2478/s13533-012-0168-x.

Martin A.J., 2000. Flaser and wavy bedding in ephemeral streams: A modern and an ancient example. Sedimentary Geology, 136, 1–5. https://doi.org/10.1016/S0037-0738(00)00085-3.

Martinius A.W., Ringrose P.S., Brostrøm C., Elfenbein C., Næss A. & Ringås J.E., 2005. Reservoir challenges of heterolithic tidal sandstone reservoirs in the Halten Terrace, mid-Norway. Petroleum Geoscience, 11, 3–16.

Matyasik I., Myśliwiec M., Leśniak G. & Such P., 2007. Relationship between Hydrocarbon Generation and Reservoir Development in the Carpathian Foreland (Poland). [in:] Lacombe O., Roure F., Lavé J. & Vergés J. (eds.), Thrust Belts and Foreland Basins: From Fold Kinematics to Hydrocarbon Systems, Frontiers in Earth Sciences, Springer, Berlin, Heidelberg, 413–427. https://doi.org/10.1007/978-3-540-69426-7_22.

Moryc W., 1992. Budowa geologiczna podłoża miocenu w rejonie Sędziszów Małopolski – Rzeszów i ich perspektywiczność. Nafta-Gaz, 48(9–10), 205–223.

Moryc W., 1996. Budowa geologiczna podłoża miocenu w rejonie Pilzno – Dębica – Sędziszów Małopolski. Nafta-Gaz, 52(12), 521–550.

Myśliwiec M., 2004. Mioceńskie skały zbiornikowe zapadliska przedkarpackiego. Przegląd Geologiczny, 52(7), 581–592.

Myśliwiec M., Plezia B. & Świętnicka G., 2004. Nowe odkrycia złóż gazu ziemnego w osadach miocenu północno-wschodniej części zapadliska przedkarpackiego na podstawie interpretacji bezpośredniego wpływu nasycenia węglowodorami na zapis sejsmiczny. Przegląd Geologiczny, 52(5), 395–402.

Nagymarosy P. & Muller P., 1988. Some Aspects of Neogene Biostratigraphic in the Pannonian Basin. [in:] Royden L.H. & Ferenc Horváth (eds.), The Pannonian Basin: A Study in Basin Evolution Basin Evolution, AAPG Memoir, 45, American Association of Petroleum Geologists, Tulsa, 69–77. https://doi.org/10.1306/M45474C6.

Nordahl K., 2004. A petrophysical evaluation of tidal heterolithic deposits application of a near wellbore model for reconciliation of scale dependent well data. Norwegian University of Science and Technology, Trondheim.

Nordahl K. & Ringrose P.S., 2008. Identifying the Representative Elementary Volume for Permeability in Heterolithic Deposits Using Numerical Rock Models. Mathematical Geosciences, 40, 753–771. https://doi.org/10.1007/s11004-008-9182-4.

Nordahl K., Ringrose P.S. & Wen R., 2005. Petrophysical characterization of a heterolithic tidal reservoir interval using a process-based modelling tool. Petroleum Geoscience, 11, 17–28. https://doi.org/10.1144/1354-079303-613.

Norris R.J. & Lewis J.J.M., 1991. The Geological Modeling of Effective Permeability in Complex Heterolithic Facies. SPE Annual Technical Conference and Exhibition, Dallas, Texas, October 1991, SPE-22692-MS. https://doi.org/10.2118/22692-MS [conference paper].

Oszczypko N., 2006. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50(1), 169–194.

Oszczypko N., Krzywiec P., Popadyuk I. & Peryt T., 2006. Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution. [in:] Golonka J. & Picha F.J. (eds.), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, AAPG Memoir, 84, American Association of Petroleum Geologists, Tulsa, 239–350. https://doi.org/10.1306/985612M843072.

Pavelić D. & Kovačić M., 2018. Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review. Marine and Petroleum Geology, 91, 455–469. https://doi.org/10.1016/j.marpetgeo.2018.01.026.

Pettijohn F.J., Potter P.E. & Siever R., 1972. Sand and Sandstone. Springer, New York. https://doi.org/10.1007/978-1-4615-9974-6.

Peyaud J.B., Bal A., Khalid N.S.B.A. & Diah M., 2010. Improved Methodology for High-Resolution Bed Mineralogy from Wireline Logs. SPWLA 51st Annual Logging Symposium, Perth, Australia, June 2010, SPWLA-2010-62460 [conference paper].

Picard M.D., 1971. Classification of fine-grained sedimentary rocks. Journal of Sedimentary Petrology, 41, 179–195. https://doi.org/10.1306/74D7221B-2B21-11D7-8648000102C1865D.

Poprawa P., Papiernik B., Krzywiec P., Machowski G. & Maksym A., 2018. Potencjał poszukiwawczy prowincji naftowych w Polsce. Wiadomości Naftowe i Gazownicze, 12, 4–12.

Porębski S.J. & Warchoł M., 2006. Znaczenie przepływów hiperpyknalnych i klinoform deltowych dla interpretacji sedymentologicznych formacji z Machowa (miocen zapadliska przedkarpackiego. Przegląd Geologiczny, 54(5), 421–429.

Przelaskowska A. & Klaja J., 2014. Cation exchange capacity measurements in sedimentary rocks. Nafta-Gaz, 70(7), 432–438.

Riegel H., Zambrano M., Balsamo F., Mattioni L. & Tondi E., 2019. Petrophysical Properties and Microstructural Analysis of Faulted Heterolithic Packages: A Case Study from Miocene Turbidite Successions, Italy. Geofluids, 958235929. https://doi.org/10.1155/2019/9582359.

Ringrose P., Nordahl K. & Wen R., 2005. Vertical permeability estimation in heterolithic tidal deltaic sandstones. Petroleum Geoscience, 11(1), 29–36. https://doi.org/10.1144/1354-079303-614.

Rzemieniarz A. & Ratuszniak Z., 2008. Nowe spojrzenie na budowę geologiczno-strukturalną utworów miocenu autochtonicznego w rejonie złoża gazu ziemnego Pruchnik-Pantalowice. Prace Instytutu Nafty i Gazu, 150, 301–306.

Sacchi M. & Horváth F., 2002. Towards a new time scale for the Upper Miocene continental series of the Pannonian basin (Central Paratethys). EGU Stephan Mueller Special Publication Series, 3, 79–94. https://doi.org/10.5194/smsps-3-79-2002.

Siddiqui N.A., Rahman A.H.A., Sum C.W., Yusoff W.I.W. & Ismail M.I., 2017. Shallow-marine sandstone reservoirs, depositional environments, stratigraphic characteristics and facies model: A review. Journal of Applied Sciences, 17, 212–237. https://doi.org/10.3923/jas.2017.212.237.

Środoń J., 1980. Precise identification of illite/smectite interstratification by X-ray powder diffraction. Clays and Clay Minerals, 28, 401–411. https://doi.org/10.1346/CCMN.1980.0280601.

Środoń J., 1981. X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite. Clay Minerals, 16(3), 297–304. https://doi.org/10.1180/claymin.1981.016.3.07.

Środoń J., 1984. X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32, 337–349. https://doi.org/10.1346/CCMN.1984.0320501.

Stephens M., Gomez-Nava S. & Churan M., 2009. Laboratory methods to assess shale reactivity with drilling fluids. American Association of Drilling Engineers. National Technical Conference & Exhibition, New Orleans, Louisiana, 2009 [conference paper].

Studencka B., 2001. Rekonstrukcje paleogeograficzne Paratetydy w miocenie środkowym: implikacje dla basenu zapadliska przedkarpackiego. Przegląd Geologiczny, 49(5), 452–453.

Terwindt J.H.J. & Breusers H.N.C., 1972. Experiments on the Origin of Flaser, Lenticular and Sand-Clay Alternating Bedding. Sedimentology, 19, 85–98. https://doi.org/10.1111/j.1365-3091.1972.tb00237.x.

Thomas R.G., Smith D.G., Wood J.M., Visser J., Calverley-Range E.A. & Koster E.H., 1987. Inclined heterolithic stratification – Terminology, description, interpretation and significance. Sedimentary Geology, 53, 123–179. https://doi.org/10.1016/S0037-0738(87)80006-4.

Urbaniec A., Stadtmüller M. & Bartoń R., 2019. Possibility of a more detailed seismic interpretation within the Miocene formations of the Carpathian Foredeep based on the well logs interpretation. Nafta-Gaz, 75(9), 527–544. https://doi.org/10.18668/NG.2019.09.02.

Urbaniec A., Bartoń R., Bajewski Ł. & Wilk A., 2020. Wyniki interpretacji strukturalnej utworów triasu i paleozoiku przedgórza Karpat opartej na nowych danych sejsmicznych. Nafta-Gaz, 76(9), 559–568. https://doi.org/10.18668/NG.2020.09.01.

Velić J., Malvić T., Cvetković M. & Vrbanac B., 2012. Reservoir Geology, Hydrocarbon Reserves and Production in the Croatian part of the Pannonian Basin System Reservoir Geology. Geologia Croatica, 65(1), 91–101. https://doi.org/10.4154/GC.2012.07.

Virolle M., Brigaud B., Féniès H., Bourillot R., Portier E., Patrier P., Derriennic H. & Beaufort D., 2021. Preservation and distribution of detrital clay coats in a modern estuarine heterolithic point bar in the Gironde estuary (Bordeaux, France). Journal of Sedimentary Research, 91, 812–832. https://doi.org/10.2110/jsr.2020.146.

Worthington P.F., 1994. Effective integration of core and log data. Marine and Petroleum Geology, 11(4), 457–466. https://doi.org/10.1016/0264-8172(94)90079-5.




How to Cite

Przelaskowska, A., Zagórska, U., Urbaniec, A., Łykowska, G., Klaja, J., Grela, J., & Kędracka, K. (2022). Mineralogical characteristics of the heterolithic formations from the Carpathian Foredeep Miocene sediments, south-eastern Poland. Geology, Geophysics and Environment, 48(3), 219–242. https://doi.org/10.7494/geol.2022.48.3.219