An awkward contaminant: are mercury concentrations in historically collected fossils a result of storage conditions?

Authors

DOI:

https://doi.org/10.7494/geol.2022.48.1.39

Keywords:

mercury, contamination , verebrates, bones

Abstract

High concentrations of mercury (Hg), reaching astonishing values in two cases, have recently been detected in Middle and Late Triassic fossil reptile bones, housed for over 100 years in several Polish museum collections. Since no correlation between either the life modes of these taxa or their burial environment was observed, the studied contaminations seem to be associated with housing conditions. The specimens were kept for an extended amount of time in boxes, in which they were stored soon after finding. A proximity of mercury-containing materials, like mercury fulminate, and unstandardized conditions of storage and conservation of the remains may result in contamination of porous bone with mercury. A detailed knowledge about the housing history of old museum collections has great importance to their prospective studies.

Downloads

Download data is not yet available.

References

Arbestain M.C., Rodríguez-Lado L., Bao M. & Macías F., 2009. Assessment of Mercury-Polluted Soils Adjacent to an Old Mercury-Fulminate Production Plant. Applied and Environmental Soil Science, 2009, 387419. https://doi.org/10.1155/2009/387419.

Beck W., Evers J., Göbel M., Oehlinger G. & Klapötke T.M., 2007. The Crystal and Molecular Structure of Mercury Fulminate (Knallquecksilber). Zeitschrift für anorganische und allgemeine Chemie, 633(9), 1417–1422. https://doi.org/10.1002/zaac.200700176.

Benson N.U., Essien J.P., Williams A.B. & Bassey D.E., 2007. Mercury accumulation in fishes from tropical aquatic ecosystems in the Niger Delta, Nigeria. Current Science, 92(6), 781–785.

Bergquist B.A., 2017. Mercury, volcanism, and mass extinctions. PNAS – Proceedings of the National Academy of Sciences of the United States of America, 114(33), 8675–8677. https://doi.org/10.1073/pnas.1709070114.

Bond D.P.G. & Grasby S.E., 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005.

Cossa D., Martin J.-M. & Sanjuan J., 1994. Dimethylmercury formation in the Alboran Sea. Marine Pollution Bulletin, 28(6), 381–384. https://doi.org/10.1016/0025-326X(94)90276-3.

Driscoll C.T., Mason R.P., Chan H.M., Jacob D.J. & Pirrone N., 2013. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environmental Science and Technology, 47(10), 4967–4983. https://doi.org/10.1021/es305071v.

Ebinghaus R., Tripathi R.M., Wallschläger D. & Lindberg S.E., 1999. Natural and Anthropogenic Mercury Sources and Their Impact on the Air-Surface Exchange of Mercury on Regional and Global Scales. [in:] Ebinghaus R., Turner R.R., de Lacerda L.D., O. & Salomons W. (eds.), Mercury Contaminated Sites: Characterization, Risk Assessment and Remediation, Environmental Science and Engineering, Springer-Verlag Berlin Heidelberg, 3–50.

Ericksen J.A. & Gustin M.S., 2004. Foliar exchange of mercury as a function of soil and air mercury concentrations. Science of The Total Environment, 324(1–3), 271–279. https://doi.org/10.1016/j.scitotenv.2003.10.034.

Garner W.E. & Hailes H.R., 1933. Thermal Decomposition and Detonation of Mercury Fulminate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 139, 576–595. https://doi.org/10.1098/rspa.1933.0040.

Gębka K., Bełdowski J. & Bełdowska M., 2016. The impact of military activities on the concentration of mercury in soils of military training grounds and marine sediments. Environmental Science and Pollution Research, 23(22), 23103–23113. https://doi.org/10.1007/s11356-016-7436-0.

Gürich G., 1884. Über einige Saurier des oberschlesischen Muschelkalkes. Zeitschrift der Deutschen Geologischen Gesellschaft, 36(1), 125–144.

Gworek B., Bemowska-Kałabun O., Kijeńska M. & Wrzosek‑Jakubowska J., 2016. Mercury in Marine and Oceanic Waters – a Review. Water, Air, & Soil Pollution, 227, 371. https://doi.org/10.1007/s11270-016-3060-3.

Harada M., 1995. Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology, 25(1), 1–24. https://doi.org/10.3109/10408449509089885.

Hazen R.M., Golden J., Downs R.T., Hystad G., Grew E., Azzolini D. & Sverjensky D., 2012. Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. American Mineralogist, 97(7), 1013–1042. https://doi.org/10.2138/am.2012.3922.

Heijlen W., Muchez P., Banks D.A., Schneider J., Kucha H. & Keppens E., 2003. Carbonate-Hosted Zn-Pb Deposits in Upper Silesia, Poland: Origin and Evolution of Mineralizing Fluids and Constraints on Genetic Models. Economic Geology, 98(5), 911–932. https://doi.org/10.2113/ gsecongeo.98.5.911.

Higueras P., Oyarzun R., Lillo J. & Morata D., 2013. Intraplate mafic magmatism. degasification, and deposition of mercury: The giant Almadén mercury deposit (Spain) revisited. Ore Geology Reviews, 51, 93–102. https://doi.org/10.1016/j.oregeorev.2012.12.004.

Howard E., 1800. On a New Fulminating Mercury. By Edward Howard, Esq. F. R. S. Philosophical Transactions of the Royal Society of London, 90, 204–238. https://doi.org/10.1098/rstl.1800.0012.

Kunisch H., 1888. Über eine Saurierplatte aus dem Oberschlesischen Muschelkalke. Zeitschrift der Deutschen Geologischen Gesellschaft, 40(4), 671–693.

Leach D.L., Viets J.G., Kozłowski A. & Kibitlewski S., 1996. Geology, geochemistry, and genesis of the Silesia-Cracow zinc-lead district, southern Poland. [in:] Sangster D.F. (ed.), Carbonate-Hosted Lead-Zink Deposits: 75th Anniversary Volume, Society of Economic Geologists Special Publication, 4, Society of Economic Geologists, 144–170. https://doi.org/10.5382/SP.04.09.

Leong Y.K. & Chang J.-S., 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology, 303, 122886. https://doi.org/10.1016/j.biortech.2020.122886.

Lin H., Morrell-Falvey J.L., Rao B., Liang L. & Gu B., 2014. Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA. Environmental Science and Technology, 48(20), 11969–11976. https://doi.org/10.1021/es502537a.

Lindgren J., Uvdal P., Engdahl A., Lee A.H., Alwmark C., Bergquist K.-E., Nilsson E. et al., 2011. Microspectroscopic Evidence of Cretaceous Bone Proteins. PLoS ONE, 6(4), e19445. https://doi.org/10.1371/journal.pone.0019445.

Mackey T.K., Contreras J.T. & Liang B.A., 2014. The Minamata Convention on Mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal. Science of the Total Environment, 472, 125–129. https://doi.org/10.1016/j.scitotenv.2013.10.115.

Meyer H., von, 1847. Die Saurier des Muschelkalkes mit Rücksicht auf die Saurier aus buntem Sandstein. Heinrich Keller, Frankfurt am Main.

Murray M.S., McRoy C.P., Duffy L.K., Hirons A.C., Schaaf J.M., Trocine R.P. & Trefry J., 2015. Biogeochemical analysis of ancient Pacific Cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change. Frontiers in Environmental Science, 3, 8. https://doi.org/10.3389/fenvs.2015.00008.

Pasieczna A., 2014. Zawartość rtęci w glebach oraz osadach rzecznych i strumieniowych w regionie śląsko-krakowskim. Biuletyn Państwowego Instytutu Geologicznego, 457, 69–86.

Percival L.M.E., Ruhl M., Hesselbo S.P., Jenkyns H.C., Mather T.A. & Whiteside J.H., 2017. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. PNAS – Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7929–7934. https://doi.org/10.1073/pnas.1705378114.

Pirrone N., Cinnirella S., Feng X., Finkelman R.B., Friedli H.R., Leaner J., Mason R. et al., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10, 5951–5964. https://doi.org/10.5194/acp-10-5951-2010.

Pyle D.M. & Mather T.A., 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment, 37(36), 5115–5124. https://doi.org/10.1016/j.atmosenv.2003.07.011.

Racki G., Rakociński M., Marynowski L. & Wignall P.B., 2018a. Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved? Geology, 46(6), 543–546. https://doi.org/10.1130/G40233.1.

Racki G., Marynowski L. & Rakociński M., 2018b. Anomalous Upper Devonian mercury enrichments: comparison of Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) and Atomic Absorption Spectrometry (AAS) analytical data. Geological Quarterly, 62(3), 487–495. https://doi.org/10.7306/gq.1419.

Rakociński M., Marynowski L., Pisarzowska A., Bełdowski J., Siedlewicz G., Zatoń M., Perriet M.C. et al., 2020. Volcanic related methylmercury poisoning as the possible driver of the end-Devonian Mass Extinction. Scientific Reports, 10, 7344. https://doi.org/10.1038/s41598-020-64104-2.

Rasmussen K.L., Boldsen J.L., Kristensen H.K., Skytte L., Hansen K.L., Mølholm L., Grootes P.M. et al., 2008. Mercury levels in Danish Medieval human bones. Journal of Archaeological Science, 35(8), 2295–2306. https://doi.org/10.1016/j.jas.2008.03.003.

Rasmussen K.L., Skytte L., Pilekær C., Lauritsen A., Boldsen J.L., Peter M.L. & Thomsen P.O., 2013. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark – the chemical life history hypothesis. Heritage Science, 1(1), 10. https://doi.org/10.1186/2050-7445-1-10

Renzoni A., Zino F. & Franchi E., 1998. Mercury levels along the food chain and risk for exposed populations. Environmental Research, 77(2), 68–72. https://doi.org/10.1006/enrs.1998.3832.

Rice K.M., Walker E.M., Jr., Wu M., Gillette C. & Blough E.R., 2014. Environmental Mercury and Its Toxic Effects. Journal of Preventive Medicine and Public Health, 47(2), 74–83. https://doi.org/10.3961/jpmph.2014.47.2.74.

Rühle E., Osika R., Pożaryski W. et al., 1980. Mapa geologiczna Polski bez utworów kenozoicznych, kredowych i jurajskich. Wydawnictwa Geologiczne, Warszawa.

Rytuba J.J., 2003. Mercury from mineral deposits and potential environmental impact. Environmental Geology, 43, 326–338. https://doi.org/10.1007/s00254-002-0629-5.

Sanei H., Grasby S.E. & Beauchamp B., 2012. Latest Permian mercury anomalies. Geology, 40(1), 63–66. https://doi.org/10.1130/G32596.1.

Schaefer J.K. & Morel F.M.M., 2009. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nature Geoscience, 2, 123–126. https://doi.org/10.1038/ngeo412.

Schrammen A., 1899. Beitrag zur Kenntnis der Nothosauriden des unteren Muschelkalkes in Oberschlesien. Zeitschrift der Deutschen Geologischen Gesellschaft, 51, 388–408.

Sinkus W., Shervette V., Ballenger J., Reed L.A., Plante C. & White B., 2017. Mercury bioaccumulation in offshore reef fishes from waters of the Southeastern USA. Environmental Pollution, 228, 222–233. https://doi.org/10.1016/j.envpol.2017.04.057.

Surmik D., Boczarowski A., Balin K., Dulski M., Szade J., Kremer B. & Pawlicki R., 2016. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland. PLoS ONE, 11(3), e0151143. https://doi.org/10.1371/journal.pone.0151143.

Surmik D., Rothschild B.M. & Pawlicki R., 2017. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone. The Science of Nature, 104, 25. https://doi.org/10.1007/s00114-017-1451-y.

Swain E.B. & Helwig D.D., 1989. Mercury in fish from northeastern Minnesota lakes: historical trends, environmental correlates, and potential sources. Journal of the Minnesota Academy of Science, 55, 1, 103–109.

Thakore K.N., 2005. Calomel A2. [in:] Wexler P. (ed.), Encyclopedia of Toxicology, 2nd ed., Elsevier, New York, 381–382.

Thibodeau A.M., Ritterbush K., Yager J.A., West A.J., Ibarra Y., Bottjer D.J., Berelson W.M. et al., 2016. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nature Communications, 7, 11147. https://doi.org/10.1038/ncomms11147.

Tiffreau C., Lützenkirchen J. & Behra P., 1995. Modeling the Adsorption of Mercury(II) on (Hydr)oxides: I. Amorphous Iron Oxide and α-Quartz. Journal of Colloid and Interface Science, 172(1), 82–93. https://doi.org/10.1006/jcis.1995.1228.

Varekamp J.C. & Buseck P.R., 1981. Mercury emissions from Mount St Helens during September 1980. Nature, 293, 555–556. https://doi.org/10.1038/293555a0.

Watras C.J., Back R.C., Halvorsen S., Hudson R.J.M., Morrison K.A. & Wente S.P., 1998. Bioaccumulation of mercury in pelagic freshwater food webs. Science of the Total Environment, 219(2–3), 183–208. https://doi.org/10.1016/S0048-9697(98)00228-9.

Yamada M., Tohno S., Tohno Y., Minami T., Ichii M. & Okazaki Y., 1995. Accumulation of mercury in excavated bones of two natives in Japan. Science of the Total Environment, 162(2–3), 253–256. https://doi.org/10.1016/0048-9697(95)04435-4.

Yao C., He T., Xu Y., Ran S., Qian X. & Long S., 2020. Mercury bioaccumulation in zooplankton and its relationship with eutrophication in the waters in the karst region of Guizhou Province, Southwest China. Environmental Science and Pollution Research, 27, 8596–8610. https://doi.org/10.1007/s11356-019-07479-8.

Downloads

Published

2022-04-15

How to Cite

Surmik, D., Cabała, J., Balin, K., & Szade, J. (2022). An awkward contaminant: are mercury concentrations in historically collected fossils a result of storage conditions?. Geology, Geophysics and Environment, 48(1), 39–49. https://doi.org/10.7494/geol.2022.48.1.39

Issue

Section

Articles