Satellite data based abundance mapping of mafic and ultramafic rocks in Mettupalayam, Tamil Nadu, India

Authors

DOI:

https://doi.org/10.7494/geol.2021.47.3.131

Keywords:

mafic and ultramafic, ASTER, SAM, SVM, band combination, PCA, BR

Abstract

The mafic and ultramafic rocks of Mettupalayam belong to the southern granulite terrain of India, which is concomitant with vital economic resources. The advantage of Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data for mapping the litho units are exploited well here for differentiating the rock units with the aid of band combination (1, 3, 6), principal component analysis (5, 1, 6) and band ratioed band combination (2/3, 3/2, 1/5 and (9–8)/1, (8–6)/2, and (9–6)/3). As part of the field study, the collection of samples and ground control points were carried out and in addition to that, the generation of laboratory reflectance spectra for samples was achieved. The Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) were performed using ASTER data with the aid of spectra obtained from the laboratory conditions to demarcate the abundance of mafic and ultramafic rocks of the area. The XRF method was used to retrieve the major oxides of the field-collected samples and the spectral absorption characters are validated with it. The results show a vibrant interpretation of the litho units.

Downloads

Download data is not yet available.

References

Abedi M., Norouzi G.-H. & Bahroudi A., 2012. Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283. https://doi.org/10.1016/j.cageo.2011.12.014.

Abrams M. & Hook S.J., 1995. Simulated Aster Data for Geologic Studies. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 692–699. https://doi.org/10.1109/36.387584.

Adiri Z., El Harti A., Jellouli A., Maacha L. & Bachaoui E.M., 2016. Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas. Journal of Applied Remote Sensing, 10(1), 016005. https://doi.org/10.1117/1.JRS.10.016005.

Anbazhagan S., Sainaba N.K. & Arivazhagan S., 2012. Remote Sensing Study of Sittampundi Anorthosite Complex, India. Journal of the Indian Society of Remote Sensing, 40, 145–153. https://doi.org/10.1007/s12524-011-0126-y.

Arivazhagan S. & Anbazhagan S., 2017. ASTER Data Analyses for Lithological Discrimination of Sittampundi Anorthositic Complex, Southern India. Geosciences Research, 2(3), 196–209. https://doi.org/10.22606/gr.2017. 23005.

Ashley P., Craw D., Mackenzie D., Rombouts M. & Reay A., 2012. Mafic and ultramafic rocks, and platinum mineralisation potential, in the Longwood Range, Southland, New Zealand. New Zealand Journal of Geology and Geophysics, 55, 3–19. https://doi.org/10.1080/00288306.2011.623302.

Bahari N.I.S., Ahmad A. & Aboobaider B.M., 2014. Application of support vector machine for classification of multispectral data. IOP Conference Series: Earth and Environmental Science, 20, 012038. https://doi.org/10.1088/1755-1315/20/1/012038.

Bishop C.A., Liu J.G. & Mason P.J., 2011. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan province, China. International Journal of Remote Sensing, 32, 2409–2426. https://doi.org/10.1080/01431161003698336.

Chetty T.R.K. & Santosh M., 2013. Proterozoic orogens in southern Peninsular India: Contiguities and complexities. Journal of Asian Earth Sciences, 78, 39–53. https://doi.org/10.1016/j.jseaes.2013.02.021.

Clark R.N., 1999. Spectroscopy of Rocks and Minerals and Principles of Spectroscopy. [in:] Rencz A.N. (ed.), Manual of Remote Sensing, Volume 3, Remote Sensing for The Earth Sciences, Wiley, 3–58.

Clark R.N. & Roush T.L., 1984. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340. https://doi.org/10.1029/JB089IB07P06329.

Collins A.S., Clark C. & Plavsa D., 2014. Peninsular India in Gondwana: The tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counter - parts. Gondwana Research, 25, 190–203. https://doi.org/10.1016/j.gr.2013.01.002.

Duuring P., Hagemann S.G., Novikova Y., Cudahy T. & Laukamp C., 2012. Targeting iron ore in banded iron formations using ASTER data: Weld Range greenstone belt, Yilgarn craton, Western Australia. Economic Geology, 107, 585–597. https://doi.org/10.2113/econgeo.107.4.585.

Elsaid M., Aboelkhair H., Dardier A., Hermas E. & Minoru U., 2014. Processing of Multispectral ASTER Data for Mapping Alteration Minerals Zones: As an Aid for Uranium Exploration in Elmissikat-Eleridiya Granites, Central Eastern Desert, Egypt. The Open Geology Journal, 8, 69–83. https://doi.org/10.2174/1874262901408010069.

Emam A., Zoheir B. & Johnson P., 2016. ASTER-based mapping of ophiolitic rocks: Examples from the Allaqi-Heiani suture, SE Egypt. International Geology Review, 58, 525–539. https://doi.org/10.1080/00206814.2015.1094382.

Gad S. & Kusky T., 2007. ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11, 326–335. https://doi.org/10.1016/j.gr.2006.02.010.

Gasmi A., Gomez C., Zouari H., Masse A. & Ducrot D., 2016. PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set. Arabian Journal of Geosciences, 9, 1–12. https://doi.org/10.1007/s12517-016-2791-1.

Ge W., Cheng Q., Jing L., Armenakis C. & Ding H., 2018. Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China. Advances in Space Research, 62, 1702–1716. https://doi.org/10.1016/j.asr.2018.06.036.

Goetz A.F.H., 1992. Imaging spectrometry for Earth remote sensing. Imaging Spectroscopy, 228, 1147–1153. https://doi.org/10.1126/science.228.4704.1147.

Gomez C., Delacourt C., Allemand P., Ledru P. & Wackerle R., 2005. Using ASTER remote sensing data set for geological mapping, in Namibia. Physics and Chemistry of the Earth, 30, 97–108. https://doi.org/10.1016/j.pce.2004.08.042.

Gopalakrishna D., Hansen E.C., Janardhan A.S. & Newton R.C., 1986. The southern high-grade margin of the Dharwar craton. Journal of Geology, 94, 247–260. https://doi.org/10.1086/629026.

Guha A., Ghosh B., Vinod Kumar K. & Chaudhury S., 2015. Implementation of reflection spectroscopy-based new ASTER indices and principal components to delineate chromitite and associated ultramafic-mafic complex in parts of Dharwar Craton, India. Advances in Space Research, 56, 1453–1468. https://doi.org/10.1016/j.asr.2015.06.043.

Guha A., Vinod Kumar K., Porwal A., Rani K., Sahoo K.C., Aneesh Kumar S.R., Singaraju V., Singh R.P., Khandelwal M.K., Raju P.V. & Diwakar P.G., 2019. Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of Paleoproterozoic sequences of Aravalli group of rocks, Rajasthan, India. Ore Geology Reviews, 108, 73–87. https://doi.org/10.1016/j.oregeorev.2018.02.021.

Gupta R.P., 2003. Remote Sensing Geology. Springer Berlin Heidelberg.

Hewson R.D., Cudahy T.J., Mizuhiko S., Ueda K. & Mauger A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99, 159–172. https://doi.org/10.1016/j.rse.2005.04.025.

Ibrahim W.S., Watanabe K. & Yonezu K., 2016. Structural and litho-tectonic controls on Neoproterozoic base metal sulfide and gold mineralization in North Hamisana shear zone, South Eastern Desert, Egypt: The integrated field, structural, Landsat 7 ETM + and ASTER data approach. Ore Geology Reviews, 79, 62–77. https://doi.org/10.1016/j.oregeorev.2016.05.012.

Khan S.D. & Mahmood K., 2008. The application of remote sensing techniques to the study of ophiolites. Earth-Science Reviews, 89, 135–143. https://doi.org/10.1016/j.earscirev.2008.04.004.

Libeesh N.K., Naseer K.A., Arivazhagan S., Abd El-Rehim A.F., Mahmoud K.A., Sayyed M.I. & Khandaker M.U., 2021. Advanced nuclear radiation shielding studies of some mafic and ultramafic complexes with lithological mapping. Radiation Physics and Chemistry, 189, 109777. https://doi.org/10.1016/j.radphyschem.2021.109777.

Liu L., Zhou J., Jiang D., Zhuang D. & Mansaray L.R., 2014. Lithological discrimination of the mafic-ultramafic complex, Huitongshan, Beishan, China: Using ASTER data. Journal of Earth Science, 25, 529–536. https://doi.org/10.1007/s12583-014-0437-3.

Mantero P., Moser G. & Serpico S.B., 2005. Partially Supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Transactions on Geoscience and Remote Sensing, 43, 559–570. https://doi.org/10.1109/TGRS.2004.842022.

Mars J.C. & Rowan L.C., 2011. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7, 276–289. https://doi.org/10.1130/GES00630.1.

van der Meer F.D., van der Werff H.M.A., van Ruitenbeek F.J.A., Hecker C.A., Bakker W.H., Noomen M.F., van der Meijde M., Carranza E.J.M., de Smeth J.B. & Woldai T., 2012. Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14, 112–128. https://doi.org/10.1016/j.jag.2011.08.002.

Meshram T.M., Nannaware S.B., Bhatacharjee S., Waghmare M.M. & Rajakumar T., 2014. PGE distribution in the Chromite bearing mafic-ultramafic Kondapalli Layered Complex, Krishna district, Andhra Pradesh, India. Open Geosciences, 7, 252–263. https://doi.org/10.1515/geo-2015-0018.

Mohan A. & Jayananda M., 1999. Metamorphism and Isotopic Evolution of Granulites of Southern India: Reference to Neoproterozoic Crustal Evolution. Gondwana Research, 2, 251–262. https://doi.org/10.1016/S1342-937X(05)70149-0.

Moore F., Rastmanesh F., Asadi H. & Modabberi S., 2008. Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-west Iran, from ASTER data. International Journal of Remote Sensing, 29, 2851–2867. https://doi.org/10.1080/01431160701418989.

Mountrakis G., Im J. & Ogole C., 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001.

Naganjaneyulu K. & Harinarayana T., 2003. Evidence for continent-continent collision zone in the South Indian Shield region. Gondwana Research, 6, 902–911. https://doi.org/10.1016/S1342-937X(05)71034-0.

Othman A.A. & Gloaguen R., 2014. Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sensing, 6, 6867–6896. https://doi.org/10.3390/rs6086867.

Pour A.B. & Hashim M., 2015. Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science, 9, 155–166.https://doi.org/10.1016/j.jtusci.2014.11.008.

Pour A.B., Park Y., Crispini L., Läufer A., Hong J.K., Park T.-Y.S., Zoheir B., Pradhan B., Muslim A.M., Hossain M.S. & Rahmani O., 2019. Mapping listvenite occurrences in the damage zones of Northern Victoria Land, Antarctica using ASTER satellite remote sensing data. Remote Sensing, 11(12), 1408. https://doi.org/10.3390/rs11121408.

Pournamdari M. & Hashim M., 2014. Detection of chromite bearing mineralized zones in Abdasht ophiolite complex using ASTER and ETM+ remote sensing data. Arabian Journal of Geosciences, 7, 1973–1983. https://doi.org/10.1007/s12517-013-0927-0.

Rajendran S., al-Khirbash S., Pracejus B., Nasir S., Al-Abri A.H., Kusky T.M. & Ghulam A., 2012. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 44, 121–135. https://doi.org/10.1016/j.oregeorev.2011.09.010.

Sabins F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4.

Santosh M., 2020. The Southern Granulite Terrane: A synopsis. Episodes, 43, 109–123. https://doi.org/10.18814/epiiugs/2020/020006.

Scott P.W., Jackson T. & Dunham A.C., 2000. Ore mineral associations and industrial minerals in the ultramafic rocks of Jamaica and Tobago. Caribbean Journal of Earth Science, 34, 5–16.

Sgavetti M., Pompilio L. & Meli S., 2006. Reflectance spectroscopy (0.3–2.5 μm) at various scales for bulk-rock identification. Geosphere, 2, 142–160. https://doi.org/10.1130/GES00039.1.

Smirnoff A., Boisvert E. & Paradis S.J., 2008. Support vector machine for 3D modelling from sparse geological information of various origins. Computers & Geosciences, 34, 127–143. https://doi.org/10.1016/j.cageo.2006.12.008.

Sultan M., Arvidson R.E., Sturchio N.C. & Guinness E.A., 1987. Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt. Geological Society of America Bulletin, 99(6), 748–762.

Uthup S., Tsunogae T., Rajesh V.J., Santosh M., Takamura Y. & Tsutsumi Y., 2020. Neoarchean arc magmatism and Paleoproterozoic granulite-facies metamorphism in the Bhavani Suture Zone, South India. Geological Journal, 55, 3870–3895. https://doi.org/10.1002/gj.3641.

Vapnik V.N., 2000. The Nature of Statistical Learning Theory. 2nd ed., Statistics for Engineering and Information Science, Springer New York.

Yamaguchi Y. & Naito C., 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24, 4311–4323. https://doi.org/10.1080/01431160110070320.

Downloads

Published

2021-11-29

How to Cite

Libeesh, N. K., & Arivazhagan, S. (2021). Satellite data based abundance mapping of mafic and ultramafic rocks in Mettupalayam, Tamil Nadu, India. Geology, Geophysics and Environment, 47(3), 131–142. https://doi.org/10.7494/geol.2021.47.3.131

Issue

Section

Articles