Sulfur and lead isotope geochemical characteristics of Pb-Zn deposits in the Khau Loc zone, northeastern Vietnam, and their significance

Authors

  • Hung The Khuong Hanoi University of Mining and Geology; 100000 Hanoi, Vietnam https://orcid.org/0000-0003-1544-6470
  • Ta Dinh Tung Vietnam Institute of Geosciences and Mineral Resources; 100000 Hanoi, Vietnam
  • Do Quoc Binh Vietnam Institute of Geosciences and Mineral Resources; 100000 Hanoi, Vietnam
  • Pham Nhu Sang Hanoi University of Mining and Geology; 100000 Hanoi, Vietnam https://orcid.org/0000-0002-5557-7419
  • Nguyen Thi Cuc Hanoi University of Mining and Geology; 100000 Hanoi, Vietnam
  • Nguyen Thi Hoang Linh Vietnam Institute of Geosciences and Mineral Resources; 100000 Hanoi, Vietnam
  • Quach Duc Tin Vietnam Institute of Geosciences and Mineral Resources; 100000 Hanoi, Vietnam

DOI:

https://doi.org/10.7494/geol.2021.47.3.143

Keywords:

lead-zinc, sulfur and lead isotopes, Khau Loc zone, northeastern Vietnam

Abstract

In northeastern Vietnam, the Khau Loc zone is considered to have high potential for lead-zinc mineralization. The lead isotope data for 18 galena samples and 18 ones of δ34S isotope data (including galena and pyrite samples) were collected from lead-zinc ore deposits in some areas in the Khau Loc zone, including Phia Dam, Khuoi Man, Ban Lin, Lung Dam, and Ta Pan. These were employed to investigate the sulfur and lead isotope geochemical characteristics of Pb-Zn deposits and their significance in this study. The samples were analyzed using the LA-ICP-MS to show that the Pb isotopic ratios of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb in the galena samples range from 17.8908 to 18.6012, 15.5794 to 16.1025, 38.4420 to 39.2118, with the average values of 18.296, 15.749, and 38.812, respectively. The pyrite and galena samples had the δ34S isotope, ranging from 9.0 to 15.106. The sulfur isotope systematics implies that most of the lead-zinc ore formations originated from marine sedimentary evaporation deposits and magmatic intrusion-volcanic eruption sources rich in silica. The distribution of lead isotopic ratios had a well-defined cluster for each deposit, indicating the formation of lead-zinc deposits and lower crust and orogen trends. In addition, these findings of lead isotopic ratios and δ 34S isotopes proved that the Khau Loc zone is an activated structure with continuous growth in continental crust thickness during the early Proterozoic and Cenozoic periods. Furthermore, the study results also presented the evolution of material sources involved in the formation of lead-zinc ores in the Khau Loc zone.

Downloads

Download data is not yet available.

References

Allegre C.J., Lewin E. & Dupre B., 1988. A coherent crust-mantle model for the uranium-thorium-lead isosystem. Chemical Geology, 70, 211–234. https://doi.org/10.1016/0009-2541(88)90094-0.

Bac D.T., 2011. Research on characteristics and distribution regularities of lead-zinc metallogenic formations in the Viet Bac area, Northern Vietnam. University of Mining and Geology, Hanoi [Ph.D. Thesis] [Bắc D.T., 2011. Nghiên cứu đặc điểm và sự phân bố sinh khoáng chì-kẽm vùng Việt Bắc, miền Bắc Việt Nam . Luận án tiến sỹ, Đại học Mỏ-Địa chất].

Binh D.Q., Cuong D.Q., Chinh K.T., Hung N.M. & Que N.T., 2005. Report on prospective results of lead-zinc, gold, and accompanying minerals of the Phia Da-Na Cang area, Cao Bang-Bac Kan provinces. Vietnam Institute of Geosciences and Mineral Resources, Hanoi [Bình D.Q., Cường D.Q., Chính K.T., Hùng N.M. & Quế N.T., 2005. Báo cáo kết quả tìm kiếm quặng chì-kẽm, vàng và các khoáng sản đi kèm vùng Phi Dạ-Na Cang, Cao Bằng-Bắc Kạn. Viện Khoa học Địa chất và Khoáng sản].

Binh D.Q., Cuong D.Q., Dong N.C., De P.Q., Linh N.T.H., Que N.T. & San V.T., 2010 . Report on prospective results of copper, lead-zinc, and accompanying minerals of the Quang Ba-Pac Nam area, Ha Giang province. Vietnam Institute of Geosciences and Mineral Resources, Hanoi [Bình D.Q., Cường D.Q., Đồng N.C., Đệ P.Q., Linh N.T.H. & Quế N.T., 2010. Báo cáo kết quả tìm kiếm quặng đồng, chìkẽm và các khoáng sản đi kèm vùng Quảng Bạ-Pắc Nậm, Hà Giang. Viện Khoa học Địa chất và Khoáng sản].

Chambers L.A., 1982. Sulfur isotope study of a modem intertidal environment and the interpretation of ancient sulfides. Geochimica et Cosmochimica Acta, 46, 721–728.

Chaussidon M., Albarede F. & Sheppard S.M.F., 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 92, 144–156. https://doi.org/10.1016/0012-821X(89)90042-3.

Claypool G.E., Helser W.T., Kaplan I.R., Sakai H. & Zak I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199–260. https://doi.org/10.1016/0009-2541(80)90047-9.

Coleman M.L., 1977. Sulphur isotopes in petrology. Journal of the Geological Society, 133, 593–608. https://doi.org/10.1144/gsjgs.133.6.0593.

Davies G.F., 1984. Geophysical and Isotopic Constraints on Mantle Convection-an Interim Synthesis. Journal of Geophysical Research, 89 (NB7), 6017–6040. https://doi.org/10.1029/JB089iB07p06017.

Dovzhikov A.Ye. (ed.), 1965. Geology of North Vietnam. Explanatory note of the Geological Map of North Vietnam at 1:500,000 scale [Довжиков А.Е. (pед.), 1965. Геология Северного Вьетнама. Объяснительная записка к геологической карте Северного Вьетнама. Масштаб 1:500 000]. Geological Department of Vietnam, Hanoi.

Duan J., Tang J. & Lin B., 2016. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore-forming metals. Ore Geology Reviews, 78, 58–68. https://doi.org/10.1016/j.oregeorev. 2016.03.019.

Duong T.V., 1990. Complex-Ore Fields in Northeastern Vietnam: Geologic Structure and Formation Conditions. Baku State University, Baku [extended abstract candidate of sciences (geology and minerals) dissertation].

Eldridge C.S., Compston W., Williams I.S., Both R.A., Walshe J.L. & Ohmoto H., 1988. Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion-microprobe, SHRIMP: I. An example from the Rammelsberg orebody. Economic Geology, 83, 443–449. https://doi.org/10.2113/gsecongeo.83.2.443.

Gill S., Piercey S., Layne G.D. & Piercey G.D., 2019. Sulphur and lead isotope geochemistry of sulphide minerals from the Zn-Pb-Cu-Ag-Au Lemarchant volcanogenic massive sulphide (VMS) deposit, Newfoundland, Canada. Ore Geology Reviews, 104, 422–435. https://doi.org/10.1016/j.oregeorev.2018.11.008.

Golonka J., Krobicki M., Pająk J, Giang N.V. & Zuchiewicz W., 2006. Global plate tectonics and paleogeography of Southeast Asia. Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków.

Graedel T.E., Harper E.M., Nassar N.T. & Reck B.K., 2015. On the Materials Basis of Modern Society. Proceedings of the National Academy of Sciences, 112, 4257–4262. https://doi.org/10.1073/pnas.1312752110.

Hoa T.T., Izokh A.E., Polyakov G.V., Borisenko A.S., Anh T.T., Balykin P.A., Phuong N.T., Rudnev S.N., Van V.V. & Nien B.A., 2008. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russian Geology and Geophysics, 49, 480–491. https://doi.org/10.1016/j.rgg.2008.06.005.

Hung K.T., 2010. Overview of magmatism in Northwestern Vietnam. Annales Societatis Geologorum Poloniae, 80, 125–186.

Hung K.T., Sang P.N., Phuong N., Linh V.T. & Sang B.V., 2020. Statistical evaluation of the geochemical data for prospecting polymetallic mineralization in the Suoi Thau-Sang Than region, Northeast Vietnam. Geology, Geophysics and Environment, 46, 285–299. https://doi.org/10.7494/geol.2020.46.4.285.

Ishihara S., Tuan-Anh T., Yasushi W. & Trong-Hoa T., 2010. Chemical characteristics of lead-zinc ores from North Vietnam, with a special attention to the in contents. Bulletin of the Geological Survey of Japan, 61, 307–23. https://doi.org/10.9795/bullgsj.61.307.

Kerridge J.F., Chang S. & Shipp R., 1988. Deuterium exchange during acid-demineralization. Geochimica et Cosmochimica Acta, 52, 2251–2255. https://doi.org/10.1016/0016-7037(88)90127-5.

Kerridge J.F., Haymon R.M. & Kastner M., 1983. Sulfur isotope systematics at the 21oN site, East Pacific Rise. Earth and Planetary Science Letters, 66, 91–100. https://doi.org/10.1016/0012-821X(83)90128-0.

Milot J., Blichert-Toft J., Sanz M.A., Fetter N., Télouk P. & Albarède F., 2021. The significance of galena Pb model ages and the formation of large Pb-Zn sedimentary deposits. Chemical Geology, 583, 120–444. https://doi.org/10.1016/j.chemgeo.2021.120444.

Naylor H., Turrier P., Vaughan D.J., Boyce A.J. & Fallick A.E., 1989. Genetic studies of redbed mineralization in the Triassic of the Cheshire basin, northwest England. Journal of the Geological Society, 146, 685–699. https://doi.org/10.1144/gsjgs.146.4.0685.

Newsom H.E., White W.M., Jochum K.P. & Hofmann A.W., 1986. Siderophile and Chalcophile Element Abundances in Oceanic Basalts, Pb-Isotope Evolution and Growth of the Earth’s Core. Earth and Planetary Science Letters, 80, 299–313. https://doi.org/10.1016/0012-821X(86)90112-3.

Ohmoto H. & Rye R.O., 1979. Isotopes of sulfur and carbon. [in:] Barnes H.L. (ed.), Geochemistry of Hydrothermal Ore Deposits, Wiley, New York, 509–567.

Quoc N.K. (ed.), 2000. Report on results of geological mapping and mineral investigation of Bac Kan sheet at 1:200.000 scale. Geological Department of Vietnam, Hanoi [Quốc N.K. (chủ biên), 2000. Báo cáo kết quả đo vẽ bản đồ và tìm kiếm khoáng sản tờ Bắc Kạn tỷ lệ 1:200.000 . Lưu trữ Cục địa chất và khoáng sản Việt Nam, Hà Nội].

Rudnick R.L. & Goldstein S.L., 1990. The Pb isotopic composition of lower crustal xenoliths and the evolution of lower crustal Pb. Earth and Planetary Science Letters, 98, 192–207. https://doi.org/10.1016/0012-821X(90)90059-7.

Sakai H., Casadevall T.J. & Moore J.G., 1982. Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii. Geochimica et Cosmochimica Acta, 46, 729–738. https://doi.org/10.1016/0016-7037(82)90024-2.

Sakai H., Des Maris D.J., Ueda A. & Moore J.G., 1984. Concentrations and isotope ratios of carbon, nitrogen, and sulfur in ocean-floor basalts and volcanic gases at Kilauea volcano, Hawaii. Geochimica et Cosmochimica Acta, 48, 2433–2441. https://doi.org/10.1016/0016-7037(84)90295-3.

Sangster D., Outridge P.M. & Davis W., 2011. Stable lead isotope characteristics of lead ore deposits of environmental significance. Environmental Reviews, 8, 115–147.https://doi.org/10.1139/a00-008.

Tinh H.X. (ed.), 2000. Report on results of geological mapping and mineral investigation of Bao Lac sheet at 1:200.000 scale. Geological Department of Vietnam, Hanoi [Tình H.X. (chủ biên), 2000. Báo cáo kết quả đo vẽ bản đồ và tìm kiếm khoáng sản tờ Bảo Lạc tỷ lệ 1:200.000 . Lưu trữ Cục địa chất và khoáng sản Việt Nam, Hà Nội].

Tri T.V. & Khuc V. (ed.), 2011. Geology and Earth Resources of Vietnam. General Department of Geology and Minerals of Vietnam, Publishing House for Science and Technology, Hanoi.

Ueda A. & Sakai H., 1984. Sulfur isotope study of Quaternary volcanic rocks from the Japanese islands arc. Geochimica et Cosmochimica Acta, 48, 1837–1848. https://doi.org/10.1016/0016-7037(84)90037-1.

Ünal-Çakır E., 2020. Sulphur and lead isotope geochemistry of the Dursunbey (Balıkesir) lead -zinc deposit. Journal of African Earth Sciences, 172, 104003. https://doi.org/10.1016/j.jafrearsci.2020.104003.

Velasco F., Pesquera A. & Herrero J.M., 1996. Lead isotope study of Zn-Pb ore deposits associated with the Basque-Cantabrian basin and Paleozoic basement, Northern Spain. Mineralium Deposita, 31, 84–92. https://doi.org/10.1007/BF00225398.

White W., 1998. Isotope Geochemistry. Geological Sciences Course, 656, Earth & Atmosphere Science Department, Cornell University, UK.

Xue C., Zeng R., Liu S., Chi G., Qing H., Chen Y., Yang J. & Wang D., 2007. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China: A review. Ore Geology Reviews, 31, 337–359. https://doi.org/10.1016/j.oregeorev.2005.04.007.

Xuyen T. (ed.), 2000. Report on results of geological mapping and mineral investigation of Ma Quang sheet at 1:200.000 scale. Geological Department of Vietnam, Hanoi [Xuyến T. (chủ biên), 2000. Báo cáo kết quả đo vẽ bản đồ và tìm kiếm khoáng sản tờ Mã Quang tỷ lệ 1:200.000. Lưu trữ Cục địa chất và khoáng sản Việt Nam, Hà Nội].

Zartman R.E. & Doe B.R., 1981. Plumbotectonicsb – the model. Tectonophysics, 75, 135–162. https://doi.org/10.1016/0040-1951(81)90213-4.

Zartman R.E. & Haines S.M., 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs – a case for bidirectional transport. Geochimica et Cosmochimica Acta, 52, 1327–1339. https://doi.org/10.1016/0016-7037(88)90204-9.

Downloads

Published

2021-12-01

How to Cite

Khuong, H. T., Tung, T. D., Binh, D. Q., Sang, P. N., Cuc, N. T., Linh, N. T. H., & Tin, Q. D. (2021). Sulfur and lead isotope geochemical characteristics of Pb-Zn deposits in the Khau Loc zone, northeastern Vietnam, and their significance. Geology, Geophysics and Environment, 47(3), 143–157. https://doi.org/10.7494/geol.2021.47.3.143

Issue

Section

Articles