Detrital zircon U-Pb geochronology of a metasomatic calc-silicate in the Tsäkkok Lens, Scandinavian Caledonides
DOI:
https://doi.org/10.7494/geol.2021.47.1.21Keywords:
Scandinavian Caledonides, Seve Nappe Complex, Tsäkkok Lens, Metasomatism, Detrital zircon U-Pb geochronologyAbstract
The Tsäkkok Lens of the Seve Nappe Complex in the Scandinavian Caledonides comprises eclogite bodies hosted within metasedimentary rocks. These rocks are thought to be derived from the outermost margin of Baltica along the periphery of the Iapetus Ocean, but detrital records from the sedimentary rocks are lacking.
Many metasedimentary outcrops within the lens expose both well-foliated metapelitic rocks and massive calc-silicates. The contacts between these two lithologies are irregular and are observed to trend at all angles to the high-pressure foliation in the metapelites. Where folding is present in the metapelites, the calc-silicate rocks are also locally folded. These relationships suggest metasomatism of the metapelites during the Caledonian orogenesis. Zircon U-Pb geochronology was conducted on sixty-one zircon grains from a calc-silicate sample to investigate if they recorded the metasomatic event and to assess the detrital zircon populations. Zircon grains predominantly show oscillatory zoning, sometimes with thin, homogeneous rims that have embayed contacts with the oscillatory-zoned cores. The zircon cores yielded prominent early Stenian, Calymmian, and Statherian populations with a subordinate number of Tonian grains. The zircon rims exhibit dissolution-reprecipitation of the cores or new growth and provide ages that span similar time frames, indicating overprinting of successive tectonic events. Altogether, the zircon record of the calc-silicate suggests that the Tsäkkok Lens may be correlated to Neoproterozoic basins that are preserved in allochthonous positions within the northern extents of the Caledonian Orogen.
Downloads
References
Albrecht L.G., 2000. Early structural and metamorphic evolution of the Scandinavian Caledonides: a study of the eclogite-bearing Seve Nappe Complex at the Arctic Circle. Sweden. Lund University, Sweden [Ph.D. Thesis].
Andersson M., Lie J.E. & Husebye E.S., 1996. Tectonic setting of post-orogenic granites within SW Fennoscandia based on deep seismic and gravity data. Terra Nova, 8, 558–566.
Andréasson P.-G., 2020. The continent-ocean (Seve-Köli) boundary in the Sarek-Padjelanta Mts. revisited: Swedish Caledonides. GFF, 142, 2, 125–138. https://doi.org/10.1080/11035897.2020.1748898.
Andréasson P.-G. & Albrecht L., 1995. Derivation of 500 Ma eclogites from the passive margin of Baltica and a note on the tectonometamorphic heterogeneity of eclogite-bearing crust. Geological Magazine, 132, 6, 729–738.
Barnes C., Majka J., Schneider D., Walczak K., Bukała M., Kośmińska K. et al., 2019. High-spatial resolution dating of monazite and zircon reveals the timing of subduction- exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides). Contributions to Mineralogy and Petrology, 174, 5. https://doi.org/10.1007/s00410-018-1539-1.
Barnes C.J., Walczak K., Janots E., Schneider D. & Majka J., 2020a. Timing of paleozoic exhumation and deformation of the high-pressure Vestgötabreen complex at the Motalafjella Nunatak, Svalbard. Minerals, 10, 2, 125. https://doi.org/10.3390/min10020125.
Barnes C.J., Jeanneret P., Kullerud K., Majka J., Schneider D.A., Bukała M. et al., 2020b. Exhumation of the High-Pressure Tsäkkok Lens, Swedish Caledonides:Insights from the Structural and White Mica 40Ar/39Ar Geochronological Record. Tectonics, 39, 7, 1–23. https://doi.org/10.1029/2020TC006242.
Be’eri-Shlevin Y., Gee D., Claesson S., Ladenberger A., Majka J., Kirkland C. et al., 2011. Provenance of Neoproterozoic sediments in the Särv nappes (Middle Allochthon) of the Scandinavian Caledonides: LA-ICP-MS and SIMS U-Pb dating of detrital zircons. Precambrian Research, 187, 181–200. https://doi.org/10.101ż/j.precamres.2011.03.007.
Bergström U., Stephens M.B. & Wahlgren C.-H., 2020. Polyphase (1.6–1.5 and 1.1–1.0 Ga) deformation and metamorphism of Proterozoic (1.7–1.1 Ga) continental crust, Idefjorden terrane, Sveconorwegian orogen. [in:] Stephens M.B. & Weihed J.B. (eds.), Sweden: Lithotectonic framework, tectonic evolution and mineral resources, Geological Society of London Memoirs, 50, Geological Society of London, London, 397–434. https://doi.org/10.1144/M50-2018-34.
Bingen B. & Soll A., 2009. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: synopsis for detrital zircon provenance studies. Norwegian Journal of Geology, 89, 267–290.
Bingen B., Andersson J., Söderlund U. & Möller C., 2008. The Mesoproterozoic in the Nordic countries. Episodes, 31, 29–34.
Bukała M., Klonowska I., Barnes C., Majka J., Kośmińska K., Janák M. et al. 2018. UHP metamorphism recordedby phengite eclogite from the Caledonides of northern Sweden: P–T path and tectonic implications. Journal of Metamorphic Geology, 36, 5, 547–566. https://doi.org/10.1111/jmg.12306.
Bukała M., Barnes C.J., Jeanneret P., Hidas K., Mazur S., Almqvist B.S.G. et al., 2020a. Brittle deformation during eclogitization of early Paleozoic blueschist. Frontiers in Earth Science, 8, 594453. https://doi.org/10.3389/feart.2020.594453.
Bukała M., Majka J., Walczak K., Włodek A., Schmitt M. & Zagórska A., 2020b. U-Pb Zircon Dating of Migmatitic Paragneisses and Garnet Amphibolite from the High Pressure Seve Nappe Complex in Kittalfjäll, Swedish Caledonides. Minerals, 10, 4, 295. https://doi.org/10.3390/min10040295.
Coutts D.S., Matthews W.A. & Hubbard S.M., 2019. Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers,10, 1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002.
Ebbing J., Afework Y., Olesen O. & Nordgulen Ø., 2005. Is there evidence for magmatic underplating beneath the Oslo Rift? Terra Nova, 17, 129–134. https://doi.org/10.1111/j.1365-3121.2004.00592.x.
Fassmer K., Froitzheim N., Janák M., Strohmeyer M., Bukała M., Lagos M., Münker C., 2021. Diachronous collision in the Seve Nappe Complex: Evidence from Lu‐Hf geochronology of eclogites (Norrbotten, North Sweden). Journal of Metamorphic Geology, 00, 1–24. https://doi.org/10.1111/jmg.12591.
Gee D.G., Fossen H., Henriksen N. & Higgins A.K., 2008. From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes, 31, 1, 44–51. https://doi.org/10.18814/epiiugs/2008/v31i1/007.
Gee D.G., Janák M., Majka J., Robinson P. & van Roermund H., 2013. Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica-Laurentia collision. Lithosphere, 5, 169–178. https://doi.org/10.1130/L220.1.
Gee D.G., Ladenberger A., Dahlqvist P., Majka J., Be’eri‑Shlevin Y., Frei D. & Thomsen T., 2014. The Baltoscandian margin detrital zircon signatures of the central Scandes. [in:] Corfu F., Gasser D. & Chew D.M. (eds.), New Perspectives on the Caledonides of Scandinavia and Related Are, Geological Society Special Publications, 390, Geological Society of London, London, 131–155. https://doi.org/10.1144/SP390.20.
Gee D.G., Andréasson P.-G., Lorenz H., Frei D. & Majka J., 2015. Detrital zircon signatures of the Baltoscandian margin along the Arctic Circle Caledonides in Sweden: The Sveconorwegian connection. Precambrian Research, 265, 40–56. https://doi.org/10.1016/j.precamres.2015.05.012.
Gee D.G., Andréasson P.-G., Li Y. & Krill A., 2017. Baltoscandian margin, Sveconorwegian crust lost by subduction during Caledonian collisional orogeny. GFF, 139, 36–51. https://doi.org/10.1080/11035897.2016.1200667
Gee D.G., Klonowska I., Andréasson P.‐G. & Stephens M.B., 2020. Middle thrust sheets in the Caledonide orogen, Sweden: The outer margin of Baltica, the continentocean transition zone and late Cambrian‐Ordovician subduction‐accretion. [in:] Stephens M.B. & Weihed J.B. (eds.), Sweden: Lithotectonic framework, tectonic evolution and mineral resources, Geological Society of London Memoirs, 50, Geological Society of London, London, 517–548. https://doi.org/10.1144/M50-2018-73.
Gołuchowska K., Barker A.K., Majka J., Manecki M., Czerny J. & Bazarnik J., 2012. Preservation of magmatic signals in metavolcanics from Wedel Jarlsberg Land, SW Svalbard. Mineralogia, 43, 179–197. https://doi.org/10.2478/v10002-012-0007-1.
Hanmer S., Corrigan D., Pehrsson S. & Nadeau L., 2000. SW Grenville Province, Canada: The case against post-1.4 Ga accretionary tectonics. Tectonophysics, 319, 33–51. https://doi.org/10.1016/S0040-1951(99)00317-0.
Jensen S., Högström A.E.S., Høyberget M., Meinhold G., McIlroy D., Ebbestad, J.O.R. et al., 2018. New occurrences of Palaeopascichnus from the Stáhpogieddi formation, Arctic Norway, and their bearing on the age of the varanger ice age. Canadian Journal of Earth Sciences, 55, 1253–1261. https://doi.org/10.1139/cjes-2018-0035.
Kirkland C.L., Bingen B., Whitehouse M.J., Beyer E. & Griffin W.L., 2011. Neoproterozoic palaeogeography in the North Atlantic Region: Inferences from the Akkajaure and Seve Nappes of the Scandinavian Caledonides. Precambrian Research, 186(1–4), 127–146. https://doi.org/10.1016/j.precamres.2011.01.010.
Kjøll H.J., 2020. Late Neoproterozoic basin evolution of the magma rich Iapetus margin of Baltica. Norwegian Journal of Geology, 100. https://doi.org/10.1785//njg100-1-6.
Kullerud K., Stephens M.B. & Zachrisson E., 1990. Pillow lavas as protoliths for eclogites: evidence from a late Precambrian-Cambrian continental margin, Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, 105, 1–10.
Ladenberger A., Be’eri-Shlevin Y., Claesson S., Gee D.G., Majka J. & Romanova I.V., 2014. Åreskutan Nappe –Caledonian Tectonometamorphic evolution of the A history revealed by SIMS U-Pb zircon geochronology. [in:] Corfu F., Gasser D. & Chew D.M. (eds.), New Perspectives on the Caledonides of Scandinavia and Related Are, Geological Society Special Publications, 390, Geological Society of London, London, 337–368.
McLelland J.M., Bickford M.E., Hill B.M., Clechenko C.C., Valley J.W. & Hamilton M.A., 2004. Direct dating of Adirondack massif anorthosite by U-Pb SHRIMP analysis of igneous zircon: Implications for AMCG complexes. Geological Society of America Bulletin, 116, 1299–1317. https://doi.org/10.1130/B25482.1.
Peck W.H., Selleck B.W., Wong M.S., Chiarenzelli J.R., Harpp K.S., Hollocher K. et al., 2013. Orogenic to postorogenic (1.20–1.15 Ga) magmatism in the Adirondack Lowlands and Frontenac terrane, southern Grenville Province, USA and Canada. Geosphere, 9, 1637–1663. https://doi.org/10.1130/GES00879.1.
Root D. & Corfu F., 2012. U-Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the Seve Nappe Complex, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, 163, 769–788. https://doi.org/10.1007/s00410-011-0698-0.
Slagstad T. & Kirkland C.L., 2017. The use of detrital zircon data in terrane analysis: A nonunique answer to provenance and tectonostratigraphic position in the Scandinavian Caledonides. Lithosphere, 9, 1002–1011. https://doi.org/10.1130/2018.2541(05).
Sláma J., Košler J., CondonD.J., Crowler J.L., Gerdes A., Hanchar J.M. et al., 2008. Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–2, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
Stephens M.B. & Weihed J.B., 2020. Polyphase (1.9–1.8, 1.5–1.4 and 1.0–0.9 Ga) deformation and metamorphism of Proterozoic (1.9–1.2 Ga) continental crust, Eastern Segment, Sveconorwegian orogen. [in:] Stephens M.B. & Weihed J.B. (eds.), Sweden: Lithotectonic framework, tectonic evolution and mineral resources, Geological Society of London Memoirs, 50, Geological Society of London, London, 351–396. https://doi.org/10.1144/M50-2018-57.
Stephens M.B., 2020. Upper and uppermost thrust sheets in the Caledonide orogen, Sweden: Outboard oceanic and exotic continental terranes. [in:] Stephens M.B. & Weihed J.B. (eds.), Sweden: Lithotectonic framework, tectonic evolution and mineral, Geological Society of London Memoirs, 50, Geological Society of London, London, 549–575. https://doi.org/10.1144/M50-2018-73.
Thelander T., 2009: Bedrock map The Caledonides in northern Sweden, northern part, scale 1:250 000. Sveriges Geologiska Undersökning, K222:1.
Vermeesch P., 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters, 15, 441-451. https://doi.org/10.1016/j.epsl.2004.05.037.
Wala V.T., Ziemniak G., Majka J., Faehnrich K., McClelland W.C., Meyer E.E. et al., 2021. Neoproterozoic stratigraphy of the Southwestern Basement Province, Svalbard (Norway): Constraints on the Proterozoic-Paleozoic evolution of the North Atlantic-Arctic Caledonides. Precambrian Research, 358. https://doi.org/10.1016/j.precamres.2021.106138.
Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F. et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19, 1–23.
Zachrisson E. & Stephens M.B., 1984. Mega-structures within the Seve Nappes, southern Norrbotten Caledonides, Sweden. [in:] Armands G. & Schager S. (eds.), Abstracts 16e Nordiska Geologiska Vintermötet, Stockholm 9–13 januari 1984, Meddelanden från Stockholms universitets geologiska institution, 255, Department of Geology, Stockholms Universitet, Stockholm, 241.
Ziemniak G., Kośmińska K., Schneider D.A., Majka J., Lorenz H., McClelland et al., 2019. Defining tectonic boundaries using detrital zircon signatures of Precambrian metasediments from Svalbard’s Southwestern Caledonian Basement Province. [in:] Piepjohn K., Strauss J. V., Reinhardt L. & McClelland W.C. (eds.), Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens, Special Paper, 541, Geological Society of America, 1–14.
Downloads
Additional Files
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)