Relationship between geomorphology of the ocean seafloor with the tectonic structure of the Earth's crust and anomalous geophysical fields: Makran Trench, Arabian Sea

Authors

DOI:

https://doi.org/10.7494/geol.2020.46.3.205

Keywords:

Geology, Geophysics, Indian Ocean, Arabian Sea, Makran Trench, Cartography, GMT

Abstract

This study examined the relationships between topographic structure and submarine geomorphology, sediment thickness, geophysical anomaly fields, geological settings and tectonic lineament stretching of the Arabian Sea region, Carlsberg Ridge morphology, Makran Trench depths by GMT. The study included spatial analysis of the high-resolution datasets (GEBCO, EGM96, GlobSed) and geomorphological modeling of the 300km-width cross-section profiles of the Makran Trench. The analysis shown correlation between complex geologic and tectonic structure, asymmetric geomorphology and geophysical anomaly fields. The Makran Trench is formed in the subduction zone of the Arabian and Eurasian plates at the basement of the continental margin of Pakistan. Submarine geomorphic structure of the Arabian Sea is complicated by the Carlsberg Ridge, Owen Fracture Zone, Aden-Owen- Carlsberg Triple junction, numerous faults and rifts. The geophysical fields of the marine free- air gravity correlate with distribution of these geomorphic structures. Bathymetric analysis of the trench revealed the most frequent depth (448 samples) at -3,250 to -3,500 m, following by intervals: -3,000 to -3,250 m (225 samples), -2,750 to -3,000 m (201 samples). Gently declining continental slope of the coastal elevations correlate with gradually decreasing depths, as equally distributed bins: 124 samples (-2,500 to -2,750 m), 96 (-2,250 to -2,500 m), 86 (-2,000 to -2,250 m). Makran Trench has asymmetric geomorphology with a high slope steepness on the continental slope of Pakistan and low steepness with flat valley on the oceanward side.

Downloads

Download data is not yet available.

References

Abedi, M., Bahroudi, A., 2016. A geophysical potential field study to image the Makran subduction zone in SE of Iran. Tectonophysics 688, 119–134.

Burg, J.P. 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Science Reviews 185, 1210–1231. DOI: 10.1016/j.earscirev.2018.09.011.

Ekström, G., Nettles, M., Dziewonski, A.M. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Physics of the Earth and Planetary Interiors, 200–201, 1–9.

Freeman, H., 1988. An expert system for the automatic placement of names on a geographic map. Information Sciences, 45, 367–378.

Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C. 2007. Swath- bathymetric mapping. Reports on Polar and Marine Research, 557, 38–45.

Glennie, K.W., Hughes Clarke, M.W., Boeuf, M.G.A., Pilaar, W.F.H., Reinhardt, B.M., 1990. Inter-relationship of Makran-Oman Mountains belts of convergence. In: Robertson, A.H.F., Searle, M.P., Ries, A.C. (Eds.), The Geology and Tectonics of the Oman Region. Geological Society, London, pp. 773–786 Special Publications. DOI: 10.1144/GSL.SP.1992.049.01.47

Grando, G., McClay, K., 2007. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sediment. Geol. 196 (1–4), 157–179.

Haghipour, N., Burg, J.-P., Ivy-Ochs, S., Hadjas, I., Kubuk, P.W., Christl, M., 2015. Correlation of fluvial terraces and temporal steady-state incision on the onshore Makran accretionary wedge in southeastern Iran: insight from channel profiles and 10Be exposure dating of strath terraces. Geol. Soc. Am. Bull. 127 (3–4), 560–583. DOI: 10.1130/B31048.1

Hosseini-Barzi, M., Talbot, C.J., 2003. A tectonic pulse in the Makran accretionary prism recorded in Iranian coastal sediments. J. Geol. Soc. Lond. 160 (6), 903–910. DOI: 10.1144/0016-764903-005

Hangouet, J.F., 1998, Approches et méthodes pour l’automatisation de la généralisation cartographique; application en bord de ville, PhD thesis (Paris: Université de Marne La Vallée).

Harms, J.C., Cappel, H.N., Francis, D.C., 1984. The Makran coast of Pakistan: its stratigraphy and hydrocarbon potential. In: Haq, B.U., Milliman, J.D. (Eds.), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan. Van Nostrand Reinhold Co., New York, United States, pp. 3–27.

Hunziker, D., Burg, J.P., Bouilhol, P., von Quadt, A., 2015. Jurassic rifting at the Eurasian Tethys margin: geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics 34(3), 571–593. DOI: 10.1002/2014TC003768

Hussain, J., Butt, K.A., Pervaiz, K., 2002. Makran coast: a potential seismic risk belt. Geological Bulletin, University of Peshawar 35, 43–56.

Jacob, K.H., Quittmeyer, R.C., 1979. The Makran Region of Pakistan and Iran: Trench-arc system with active plate subduction. In: Farah, A., Dejong, K.A. (Eds.), Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, 305–317.

Kananian, A., Juteau, T., Bellon, H., Darvishzadeh, A., Sabzehi, M., Whitechurch, H., Ricou, L.-E., 2001. The ophiolite massif of Kahnuj (western Makran, southern Iran): new geological and geochronological data. C. R. Acad. Sci. Ser. IIA Earth Planet. Sci. 332 (9), 543–552.

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. 2013a. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, 5(1), 28–42. doi: 10.2478/s13533-012-0120-0

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. 2013b. Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. 54th International Conference Environmental & Climate Technologies. Riga, Latvia. doi: 10.13140/RG.2.2.23026.96963

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection. Proceedings of the International Conference. March 19–20, 2014. Minsk, Belarus, 85–90.

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16), 449–458. doi: 10.30638/eemj.2017.045

Kopp, C., Fruehn, J., Flueh, E.R., Reichert, C., Kukowski, N., Bialas, J., Klaeschen, D., 2000. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics 329 (1–4), 171–191. DOI: 10.1016/S0040-1951(00)00195-5

Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C.D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P. 2006. The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: Gohl, K. (ed). Expeditionsprogramm Nr. 75 ANT XXIII/4, AWI Helmholtz Centre for Polar and Marine Research. doi: 10.13140/RG.2.2.11468.87687

Laane, J.L., Chen, W.-P., 1989. The Makran earthquake of 1983 April 18: a possible analogue to the Puget Sound earthquake of 1965? Geophysical Journal International 98 (1), 1–9. DOI: 10.1111/j.1365-246X.1989.tb05509.x

Lemenkova, P. 2020a. Visualization of the geophysical settings in the Philippine Sea margins by means of GMT and ISC data. Central European Journal of Geography and Sustainable Development, 2(1), 5–15. doi: 10.6084/m9.figshare.12044799

Lemenkova, P. 2020b. GMT-based geological mapping and assessment of the bathymetric variations of the Kuril-Kamchatka Trench, Pacific Ocean. Natural and Engineering Sciences, 5(1), 1–17. doi: 10.28978/nesciences.691708

Lemenkova, P. 2020c. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, 74(97), 1, 19–39. doi: 10.6084/m9.figshare.12249773

Lemenkova, P. 2019a. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45(2), 57–84. doi: 10.3846/gac.2019.3785

Lemenkova, P. 2019b. Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics, 108, 9–22. doi: 10.2478/rgg-2019-0008

Lemenkova, P. 2019c. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2), 39–48. doi: 10.21163/GT_2019.142.04

Lemenkova, P. 2019d. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4), 181–194. doi: 10.2478/pcr-2019-0015

Lemenkova, P. 2019e. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, 65 (4), 1–22. doi: 10.35180/gse-2019-0020

Lemenkova, P. 2019f. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters, 27(2), 72–89. doi: 10.6084/m9.figshare.11544048

Lemenkova, P. 2019g. Geophysical Modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series, 19(2), 73–94. doi: 10.6084/m9.figshare.12005148

Lemenkova, P. 2019h. An Empirical Study of R Applications for Data Analysis in Marine Geology. Marine Science and Technology Bulletin, 8(1), 1–9. doi: 10.33714/masteb.486678

Lemenkova, P. 2019i. Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering, 34, 51–60. doi: 10.26650/ASE2019547010

Lemenkova, P. 2019k. Geospatial Analysis by Python and R: Geomorphology of the Philippine Trench, Pacific Ocean. Electronic Letters on Science and Engineering, 15(3), 81–94. doi: 10.6084/m9.figshare.11449362

Lemenkova, P. 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2, 35–42. doi: 10.6084/m9.figshare.7434167

Lemenkova, P., Promper, C., Glade, T. 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: Eberhardt, E., Froese, C., Turner, A. K. & Leroueil, S. (Eds.). Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), Banff, Canada, 279–285.

Lemenkova, P. 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente. 158 pp.

Lemoine F.G., Kenyon S.C., Factor J.K., et al. (1998). NASA/TP-1998-206861: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 USA.

Lisitsyn A.P. 1974. Sedimentation in the oceans. The quantitative distribution of sedimentary material. Moscow, Science. 545 pp.

Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H., & Weatherall, P. (2018). The Nippon Foundation – GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences, 8(2), 63. DOI:10.3390/geosciences8020063

Minshull, T.A., Edwards, R.A., Flueh, E.R. 2015. Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data. Geophysical Journal International, 202(1), 454–463, DOI: 10.1093/gji/ggv162.

Monahan, D. (2004). GEBCO: the Second Century. D. Monahan, University of New Hampshire. Hydro International, 8(9).

Motaghi, K., Shabanian, E., Nozad-Khalil, T. (2020). Deep structure of the western coast of the Makran subduction zone, SE Iran. Tectonophysics, 776, 228314. DOI: 10.1016/j.tecto.2019.228314

Murton B.J., Rona, P.A. 2015. Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow spreading centre analogues. Deep-Sea Research II, 121, 71–84.

Neprochnov, Yu. P., 1961. Sediment thickness in the basin of the Arabian Sea. Reports of the Academy of Sciences USSR, 139 (1).

Pimm, A.C., Burroughs, R.H., Bunce, E.T., 1972. Oligocene sediments near Chain Ridge, northwest Indian Ocean: structural implications. Marine Geology, 13(1), M14-M18. DOI: 10.1016/0025-3227(72)90068-0

Purnachandra Rao, V. 1986. Phosphorites from the Error Seamount, Northern Arabian Sea. Marine Geology, 71(1–2), 177-186. DOI: 10.1016/0025-3227(86)90038-1

Prins, M.A., Postma, G., Weltje, G.J. 2000. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Marine Geology, 169 (3–4), 351-371.

Regard, V. Hatzfeld, D. Molinaro, M. Aubourg, C. Bayer, R. Bellier, O. Yamini-Fard, F. Peyret, M. Abbassi, M. 2010. The transition between Makran subduction and the Zagros collision: recent advances in its structure and active deformation. Geological Society, London, Special Publications, 330(1), 43–64. DOI:10.1144/SP330.4

Ruas, A. 1995. Multiple paradigms for Automating Map Generalization: Geometry, Topology, Hierarchical Partitioning and Local Triangulation. Proceedings of AutoCarto 12, (Charlotte, NC: ACSM/ASPRS), 69–78.

Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65-67.

Smith, W.H.F., Sandwell, D.T., 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962.

Schenke, H.W., Lemenkova, P. 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16–21.

Stein, C.A., Cochran, J.R. 1985. The transition between the Sheba Ridge and Owen Basin: rifting of old oceanic lithosphere. Geophysical Journal Royal Astronomical Society, 81(1), 47–74.

Straume E.O., Gaina C., Medvedev S., Hochmuth K., Gohl K., Whittaker J.M., et al. 2019, GlobSed: Updated total sediment thickness in the world's oceans. Geochemistry, Geophysics, Geosystems, 20.

Suetova, I.A., Ushakova, L.A., Lemenkova, P. 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142. doi: 10.6084/m9.figshare.7435535

Wessel, P., Smith, W.H.F. 1991. Free software helps map and display data. EOS Transactions of the American Geophysical Union 72 (41), 441.

Wessel P., Smith W.H.F. 2018. The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook. Computer software manual. U.S.A.

Wessel, P., Smith, W.H F. Scharroo, R., Luis, J.F. & Wobbe, F. 2013. Generic mapping tools: Improved version released, Eos Transactions AGU 94(45), 409– 410.

Wolff, T. 1967. Danish Expeditions on the Seven Seas. Copenhagen: Rhodos.

Downloads

Published

2020-10-27

How to Cite

Lemenkova, P. (2020). Relationship between geomorphology of the ocean seafloor with the tectonic structure of the Earth’s crust and anomalous geophysical fields: Makran Trench, Arabian Sea. Geology, Geophysics and Environment, 46(3), 205. https://doi.org/10.7494/geol.2020.46.3.205

Issue

Section

Articles