The measurement and interpretation methodology of resistivity logs affected by the Groningen effect – a Polish case study

Stanislaw Baudzis, Jadwiga A. Jarzyna, Edyta Puskarczyk

Abstract


True formation resistivity Rt measurement is one of the fundamental logs in the calculation of hydrocarbon resources. That is why it is very important to have the most reliable resistivity data possible. In this paper, the various outcomes obtained by Polish well log analysts and engineers for the proper determination of hydrocarbon saturation in the Main Dolomite deposits in the Polish Lowland are presented. The long history of efforts directed to make proper exploitation decisions in wells where the Groningen effect has been observed is illustrated, starting with the standard measurement and interpretational approach, through the modified construction of a reference electrode in a Laterolog device and ending with an examination of HRLA (High-Resolution Laterolog Array) or Array Compensated Resistivity Tool) ACRt results. The processing of resistivity logs with the special Poprawki software is included.

Keywords


Groningen effect, Laterologs, induction tools, resistivity, hydrocarbon saturation

Full Text:

PDF

References


Andersen B.I., 2001. Modeling and inversion methods for the interpretation of resistivity logging tool response. Delft University of Technology [Ph.D. Thesis].

Baudzis S. & Jarzyna J., 2018. Improvement of Measurement and Interpretation of LLD Resistivity Log in the Polish Cases of Groningen Effect Formations. [in:] 80th EAGE annual conference & exhibition 2018: 11–14 June 2018, Copenhagen, Denmark, https://doi.org/10.3997/2214-4609. 201800959.

Boyeldieu C. & Winchester A., 1982. Use of the Dual Laterolog for the Evaluation of the Fracture Porosity in Hard Carbonate Formations. [in:] Offshore South East Asia Show, 9–12 February, Singapore, SPE-10464-MS, Society of Petroleum Engineers, https://doi.org/10.2118/10464-MS.

Chemali R.E. & Dirk W.C., 1987. Method and Apparature for Measuring Resistivity of an Earth Formation. U.S. Patent 4,646,026.

Cichy A. & Ossowski A., 2015. Modeling Electrical Field Distribution in Layered Geological Rock Formations with a Borehole Using the Coulomb Charges Method. Acta Geophysica, 63, 5, 1244–1255, https://doi.org/10.2478/s11600-014-0253-2.

Cozzolino K. & Jadir da Conceicao da Silva, 2007. Synthetic focusing and simulation of dual laterolog tool in axisymmetric subsurface models. Journal of Applied Geophysics, 61(2), 102–110, https://doi.org/10.1016/j.jappgeo.2006.05.001.

Drahos D. & Galsa A., 2015. Modeling Groningen effect on deep laterolog. Geosciences and Engineering, 4, 9–21.

Ellis Darwin V. & Singer Julian M., 2008. Well Logging for Earth Scientists. 2nd ed., Springer.

Górski M., Trela M., Tomaszewska J. & Górska W., 1996. Opracowanie badań sejsmicznych 3D w rejonie Barnówko-Lubiszyn [industry Report – Arch. PGNiG S.A., Warsaw, Poland].

Guyod H., 1984. Factors Affecting the Responses of Laterolog-Type Logging Systems (LL3 and LL7). Journal of Petroleum Technology, 16, 02, SPE-714-PA, https://doi.org/10.2118/714-PA.

Halliburton, 2005. Array Compensated Resistivity Tool (ACRt™). Halliburton.

Jarzyna J.A., Bała M., Baudzis S., Cichy A. & Ossowski A., 2014. Modelowanie odpowiedzi sterowanych sond do profilowania oporności w zróżnicowanych ośrodkach geologicznych dla poprawienia wyznaczania oporności rzeczywistej warstw [project documentation – AGH University of Science and Technology, Kraków, Poland/PGNiG SA, Warsaw, Poland].

Jarzyna J.A., Cichy A., Drahos D., Galsa A. Bala M.J. & Ossowski A., 2016. New Methods for Modeling Laterolog resistivity Corrections. Acta Geophysica, 64, 2, 417–442, https://doi.org/10.1515/acgeo-2016-0012.

Klein J.D., Martin P.R. & Allen D.F., 1997. Petrophysics of electrically anisotropic reservoirs, The Log Analyst, 38, 25–36.

Król L., 2002. Historia rozwoju geofizyki wiertniczej w Toruńskiej Geofizyce. [in:] Kiełt M. (red.), VIII Krajowa Konferencja Naukowo-Techniczna: Zastosowanie metod i danych geofizyki wiertniczej w górnictwie naftowym, sejsmice i geologii, Szymbark, 23–26 IX 2002, V.I, 3–36.

Mamczur S., Radecki S. & Wojtkowiak Z., 1997. O największym złożu ropy naftowej w Polsce Barnówko-Mostno-Buszewo (BMB). Przegląd Geologiczny, 45, 6, 582–588.

Nam M.J, Pardo D. & Torres-Verdin C., 2010. Assessment of Delaware and Groningen effect on dual-laterolog measurements with a self-adaptive hp finite-element method. Geophysics, 75, 6, 143–149.

Piesik-Buś W. 2018. Bilans stanu zasobów gazu ziemnego na przykładzie złóż Niżu Polskiego. Nafta-Gaz, 7, 543–551, https://doi.org/10.18668/NG.2018.07.08.

Puskarczyk E. & Baudzis S., 2018, Wykorzystanie sztucznych sieci neuronowych do odtworzenia brakujących danych i poprawy niejednoznacznych wyników, na przykładzie profilowań geofizyki otworowej. [in:] Geopetrol 2018: rozwój technik poszukiwania i eksploatacji złóż węglowodorów: Zakopane–Kościelisko, 17–20.09.2018: materiały konferencyjne, Instytut Nafty i Gazu – Państwowy Instytut Badawczy, Kraków, 281–286.

Rocha H., Costa J.S., Carrasquilla A. & Carrasco A., 2019. Petrophysical characterization using well log resistivity and rock grain specific surface area in a fractured carbonate pre-salt reservoir in the Santos Basin, Brazil. Journal of Petroleum Science and Engineering, 183, 106372, https://doi.org/10.1016/j.petrol.2019.106372.

Schlumberger, 1970. The Dual Laterolog. Schlumberger, Houston, Texas.

Sibbit A.M. & Faivre O., 1985. The Dual Laterolog Response in Fractured Rocks. [in:] SPWLA 26th Annual Logging Symposium, 17–20 June, Dallas, Texas, SPWLA-1985-T, Society of Petrophysicists and Well Log Analysts, Austin, Texas.

Smits J.W., Benimeli D., Dubourg I. et al., 1995. High Resolution from a New Laterolog with Azimuthal Imaging. [in:] SPE Annual Technical Conference and Exhibition, Dallas, Texas, 22–25 October 1995, SPE-30584-MS, https://doi.org/10.2118/30584-MS.

Smits J.W., Dubourg I., Luling M.G. et al., 1998. Improved Resistivity Interpretation Utilizing a New Array Laterolog Tool and Associated Inversion Processing. [in:] SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 27–30 September 1998, SPE-49328-MS, Society of Petroleum Engineers, https://doi.org/10.2118/49328-MS.

Szijártó M., Balázs L., Drahos D. & Galsa A., 2017. Numerical sensitivity test of three-electrode laterolog borehole tool. Acta Geophysica, 65, 701–712.

Trouiller J.C. & Dubourg I., 1994. A Better Deep Laterolog Compensated for Groningen and Reference Effects. [in:] SPWLA 35th Annual Logging Symposium, 19–22 June, Tulsa, Oklahoma, SPWLA-1994-VV, Society of Petrophysicists and Well Log Analysts, Austin, Texas.

Vallinga P.M. & Yuratich M.A., 1993. Accurate Assessment of Hydrocarbon Saturations in Complex Reservoirs from Multi-Electrode Resistivity Measurements. [in:] SPWLA 34th Annual Logging Symposium, 13–16 June, Calgary, Alberta, SPWLA-1993-E, Society of Petrophysicists and Well Log Analysts, Austin, Texas.

Vasvari V., 2011. On the applicability of DLL for the determination of fracture parameters in hard rock aquiffery. Austrian Journal of Earth Sciences, 104/2, 80–89.

Woodhouse R., 1978. The laterolog Groningen phantom can cost you money. [in:] SPWLA 19th Annual Logging Symposium, 13–16 June, El Paso, Texas, SPWLA-1978-R, Society of Petrophysicists and Well Log Analysts, Austin, Texas.

Xiao-Wei, Si-Hui Xu, Guan-You Xu, Xuan-Feng, Jiaming Feng & Di-Ren Liu, 2017. Numerical simulation of dual laterolog response in directional wells and development of correction plate. Open Journal of Yangtze Gas and Oil, 2, 237–248, https://doi.org/10.4236/ojogas.2017.24019.

Yang W., Torres-Verdín C., Akkurt R., Al-Towijri A., Al-Dossari S. & Ersoz H., 2007. Interpretation of frequency-dependent dual-laterolog measurements acquired in Middle-East carbonate reservoirs using the second-order finite-element method (Expanded Abstract). [in:] SPWLA 48th Annual Logging Symposium, June 3–6, 2007, Society of Petrophysicists and Well Log Analysts, Austin, Texas.




DOI: https://doi.org/10.7494/geol.2020.46.1.35

Refbacks

  • There are currently no refbacks.