Determination of stress state based on well logging data and laboratory easurements – a CBM well in the southeastern part of the Upper Silesian Coal Basin (Poland)
DOI:
https://doi.org/10.7494/geol.2020.46.2.77Keywords:
mechanical earth model, Upper Silesian Coal Basin, stress stateAbstract
The main objective of this study is to present calculation methods of horizontal stress profiles, taking into account the stress boundaries model, poro-elastic horizontal strain model and the effective stress ratio approach, using calibration with wellbore failure. The mechanical earth model (MEM) parameters from log measurements and well testing data were estimated for a well located in the southeastern part of the Upper Silesian Coal Basin. Log-derived horizontal stresses of the well are commonly treated as the final product of geomechanical modeling in oil and gas practices. A less popular method for estimating horizontal stresses is based on Kirsch equations juxtaposed with compressional and tensile failure observed on a micro-imager or six-arm caliper. Using this approach, horizontal stresses are determined based on the fact that when hoop stresses exceed the formation’s tensile strength, tensile fractures are created, and when those stresses exceed the compressive strength of the formation, breakouts can be identified. The advantage of this method is that it can be run without in situ stress measurements. The presented workflow is recommended every time there is an image log and dipole sonic measurement in the available dataset, both being necessary to observe the failure zones and MEM.Downloads
References
Aadnoy B.S., 1990. Inversion technique to determine the in situ stress field from fracturing data. Journal of Petroleum Science and Engineering, 4, 127–141. https://doi. org/10.1016/0920-4105(90)90021-T.
Aleksandrowski P., Buła Z., Karnkowski P.H., Konon A., Oszczypko N., Ślączka A., Żaba J., Żelaźniewicz A. & Żytko K., 2011. Regionalizacja tektoniczna Polski. Komitet Nauk Geologicznych PAN, Wrocław.
Anderson E.M., 1951. The Dynamics of Faulting and Dyke Formation: with Applications to Britain. Oliver and Boyd, Edinburgh.
Bell J.S. & Gough D.I., 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells. Earth and Planetary Science Letters, 45, 2, 475–482. https://doi.org/ 10.1016/0012-821X(79)90146-8.
Blanton T.L. & Olson, J.E., 1999. Stress magnitudes from logs: effects of tectonic strains and temperature. SPE Reservoir Evaluation & Engineering , SPE Paper 54653. 2, 1, 62–68. https://doi.org/10.2118/54653-PA.
Buła Z., 2000. Dolny paleozoik Górnego Śląska i zachodniej Małopolski . Prace Państwowego Instytutu Geologicznego, 171, PIG, Warszawa.
Buła Z. & Żaba J., 2005. Pozycja tektoniczna Górnośląskiego Zagłębia Węglowego na tle prekambryjskiego i dolnopaleozoicznego podłoża. [in:] Jureczka J., Buła Z. & Żaba J. (red.), Geologia i zagadnienia ochrony środowiska w regionie górnośląskim , Państwowy Instytut Geologiczny, Polskie Towarzystwo Geologiczne, Warszawa, 14–42.
Buła Z. & Żaba J., 2008. Struktura prekambryjskiego podłoża wschodniej części bloku górnośląskiego (Brunovistulicum). Przegląd Geologiczny, 56, 473–480.
Buła Z., Żaba J. & Habryn R., 2008. Regionalizacja tektoniczna Polski-Polska południowa (blok górnośląski i blok małopolski). Przegląd Geologiczny, 56, 912–920.
Castagna J.P., Batzle M.L. & Eastwood R.L., 1985. Relation - ships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50, 4, 571–581. https://doi.org/10.1190/1.1441933.
Colmenares L.B. & Zoback M.D., 2002. A statistical evaluation of rock failure criteria constrainedby polyaxial test data for five different rocks. International Journal of Rock Mechanics and Mining Sciences, 39, 695–729.
Dębowski Z., 1973. Ogólne dane o Górnośląskim Zagłębiu Węg low y m. [i n:] Karbon Górnośląskiego Zagłębia Węglowego , Instytut Geologiczny – Prace, 61, Wydawnictwa Geologiczne, Warszawa, 9–16.
Dohmen T., Zhang J. & Blangy J.P., 2015. Stress shadowing’ effect key to optimizing spacing of multistage fracture stages. https://www.aogr.com/magazine/frac-facts/ stress-shadowing-effect-key-to-optimizing-spacing-of-multistage-fracture [access: 20.01.2020] .
Dubiński J., Stec K. & Bukowska M., 2019. Geomechanical and tectonophysical conditions of mining-induced seismicity in the Upper Silesian Coal Basin in Poland: a case study. Archives of Mining Sciences, 64, 1, 163–180.
Dudek J., Kępiński M., Podsobiński D. & Ryder P., 2020. Critically stressed fractures and their contribution to f low – coal bed methane case study. [in:] Conference Proceedings, 4 th EAGE Naturally Fractured Reservoir Work - shop, Ras Al Khaimah 11–13 February 2020, European Association of Geoscientists & Engineers. https://doi. org/10.3997/2214-4609.2020622010.
Ewy R., 1999. Wellbore-stability predictions by use of a modified Lade criterion. SPE Drilling and Completion, 14(2), 85–91. https://doi.org/10.2118/56862-PA .
Final Evaluation Report of wells X-1, -2H, -3K, -4H. Arch. PGNiG, Warszawa.
Finger F., Hanžl P., Pin C., Von Quadt A. & Steyrer H.P., 2000. The Brunovistulian: Avalonian Precambrian sequence at the eastern and of the Central European Variscides? [in:] Franke W., Haak V., Oncken O. & Tanner D. (ed s.), Orogenic processes: Quantification and modelling in the Variscan Belt , Geological Society, London, Special Publications, 179, 103–112.
Gardner G.H.F., Gardner L.W. & Gregory A.R., 1974. Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780. https://doi. org/10.1190/1.1440465.
Gassmann F., 1951. Über die Elastizität poroser Medien . Mitteilungen aus dem Institut für Geophysik an der Eidgenössischen Technischen Hochschule Zürich, 17, Institut für Geophysik an der ETH.
Heidbach O., Tingay M., Barth A., Reinecker J., Kurfeß D. & Müller B., 2008. The World Stress Map, Database Release 2008 . https://doi.org/10.1594/GFZ.WSM.Rel2008.
Horsrud P., 2001. Estimating mechanical properties of shale from empirical correlations. SPE Drilling & Completion, 16, 2, 68–73. https://doi.org/10.2118/56017-PA.
Jaeger J.C. & Cook N.G.W., 1979. Fundamentals of Rock Mechanics. 3 rd ed. Chapman & Hall, New York.
Jarosiński M., 2005. Ongoing tectonic reactivation of the Outer Carpathians and its impact on the foreland: Results of borehole breakout measurements in Poland. Tectonophysics, 410, 189–216.
Jarosiński M., 2006. Recent tectonic stress field investigations in Poland: a state of the art. Geological Quarterly, 50(3), 303 –321.
Jędrzejowska-Tyczkowska H. & Słota-Valim M., 2012. Mechaniczny model Ziemi jako nowy i konieczny warunek sukcesu w poszukiwaniach i eksploatacji niekonwencjonalnych złóż węglowodorów. Nafta-Gaz , 68, 329–340.
Jureczka J. & Kotas A., 1995. Upper Silesian Coal Basin. [in:] Zdanowski A. & Żakowa H. (eds.), The carboniferous system in Poland , Prace Państwowego Instytutu Geologicznego, 148, PIG, Warszawa, 164–173.
Kalvoda J., Leichmann J., Bábek O. & Melichar R., 2003. Brunovistulian terrane (Central Europe) and Istanbul Zone (NW Turkey): Late Proterozoic and Paleozoic tectonostratigraphic development and paleogeography. Geologica Carpathica, 54, 139–152.
Kirsch G., 1898. Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereins Deutscher Ingenieure, 42, 797–807.
Kotas A., 1995. Lithostratigraphy and sedimentologic – paleogeographic development. Moravian-Silesian-Cracovian region. Upper Silesian Coal Basin. [in:] Zdanowski A. & Żakowa H. (eds.), The Carboniferous system in Poland , Prace Państwowego Instytutu Geologicznego, 148, PIG, Warszawa, 124–134.
Kotas A., 1982. Zarys budowy geologicznej Górnośląskiego Zagłębia Węglowego. [in:] Rożkowski A. & Ślósarz J. (red.), Przewodnik 54. Zjazdu Polskiego Towarzystwa Geologicznego, Sosnowiec 23–25.09.1982, Wydawnictwa Geologiczne, Warszawa, 45–72.
Kotas A. & Porzycki J., 1984. Pozycja geologiczna i główne cechy karbońskich zagłębi węglowych Polski. Przegląd Geologiczny, 22, 5, 268–280.
Kumar H., Mishra S. & Mishra M.K., 2015. Experimental Evaluation of Geomechanical properties of Coal using Sonic Wave Velocity. [in:] International Conference on Advances in Agricultural, Biological & Environmental Sciences (AABES-2015), London, 41–45. https://dx.doi. org/10.15242/IICBE.C0715073.
Lade P., 1977. Elasto-plasto stress-strain theory for cohesionless soil with curved yield surfaces. International Journal of Solids and Structures, 13, 1019–1035.
Lal M., 1999. Shale stability: drilling fluid interaction and shale strength. [in:] SPE Asia Pacific Oil and Gas Conference and Exhibition, 20–22 April, Jakarta, Indonesia, Society of Petroleum Engineering. https://dx.doi. org/10.2118/54356-MS.
Łukaszewski P. et al., 2019. Raport z wykonania badań geomechanicznych trójosiowego ściskania 18 próbek rdzeniowych z odwiertu Well X. Zakład Geomechaniki, Wydział Geologii UW.
McNally G.H., 1987. Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration, 24, 381–395.
Różkowski A. (red.), 2004. Środowisko hydrogeochemiczne karbonu produktywnego Górnośląskiego Zagłębia Węglowego. Wydawnictwo Uniwersytetu Śląskiego, Katowice.
Słoczyński T. & Drozd A., 2018. Methane potential of the Upper Silesian Coal Basin carboniferous strata – 4D petroleum system modeling results. Nafta-Gaz, 74, 10, 703–714. https://d x.doi.org/10.18668/NG.2018.10.01.
Słota-Valim M., 2014. Projektowanie wtórnego zabiegu udostępniania złóż typu niekonwencjonalnego z uwzględnieniem geomechanicznego modelu Ziemi. Nafta-Gaz , 70, 9, 563–573.
Zdanowski A. & Żakowa H. (red.), 1995. The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 148, PIG, Warszawa.
Zoback M.D., 2007. Reservoir Geomechanics. Cambridge University Press.
Zoback M.D., Barton C.A., Brudy M., Castillo D.A., Finkbeiner T., Grollimund B.R., Moos D.B., Peska P., Ward C.D. & Wiprut D.J., 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics & Mining Sciences , 40, 1049–1076. https://d x.doi.org/10.1016/j.ijrmms.2003.07.001.
Żelaźniewicz A., Buła Z., Fanning M., Seghedi A. & Żaba J., 2009. More evidence on Neoproterozoic terranes in southern Poland and southeastern Romania. Geological Quarterly, 53, 93–124.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)