The effect of de-icing roads with salt on the environment in Krakow (Poland)
DOI:
https://doi.org/10.7494/geol.2019.45.3.195Keywords:
Krakow, soil salinity, road salt, winter road maintenanceAbstract
The de-icing of roads and streets in the winter season is a necessity in many European countries, where the mean day temperature drops below 0°C for long periods. Among the many chemicals used for winter road maintenance, the most popular in Poland is sodium chloride in various forms and mixtures, due to its relatively low price and availability. This agent, however, contributes to the increase of salinity in the soil environment and may lead to disturbances in soil properties and premature plant necrosis. The impact of the usage of chloride salts on the soil environment was researched in Krakow’s city centre by means of the examination of soil samples collected prior to the de-icing season (November) and afterwards (February) as well as snow samples taken in February. A general deterioration of the examined parameters (pH, conductivity, chloride concentrations, carbonate concentrations) was observed after the winter season, but still the results for most samples did not pose a serious threat to the soil environment or plants. This was mainly the result of the fact that the winter seasons in European countries have become increasingly mild and warm, which contributes to decreased usage of chloride salts. However, the state of soils in the Main Square was disturbing, as demonstrated by the clearly elevated chemical parameters of samples, despite a ban on the use of salt in this area. These results indicate the most probable reason for the withering of trees growing there, leading to them being frequently replaced.Downloads
References
Adamiec E., Wieszała R., Strzebońska M. & Jarosz-Krzemińska E., 2013. An attempt to identify traffic related elements in snow. Geology, Geophysics & Environment, 39, 4, 317–329.
Amundsen C.E., Håland S., French H., Roseth R. & Kitterød N.-O., 2010. Salt SMART. Environmental damages caused by road salt – a literature review. Norwegian Public Roads Administration Directorate of Public Roads Technology Department, Oslo.
Bach A. & Pawłowska B., 2006. Effect of sodium chloride salinity and pH of soil on ornamental urban trees in Kraków with regard to nature conservations in cities. Ecological Chemistry and Engineering, 13, 455–461.
Bäckström M., Karlsson S., Bäckman J., Folkeson L. & Lind B., 2004. Mobilisation of heavy metals by deicing salts in a roadside environment. Water Research, 38, 3, 720–732.
Blomqvist G. & Johansson E.-L., 1999. Airborne spreading and deposition of de-icing salt – a case study. Science of the Total Environment, 235, 1–3, 161–168.
Czerniawska-Kusza I., Kusza G. & Dużyński M., 2004. Effect of Deicing Salts on Urban Soils and Health Status of Roadside Trees in the Opole Region. Environmental Toxicology, 19, 296–304.
Černohlávková J., Hofman J., Bartoš T., Sáňka M. & Anděl P., 2008. Effects of road deicing salt on soil microorganisms. Plant, Soil and Environment, 54, 11, 479–485.
Ćwiąkała M., Kołodziejczyk U. & Rafalski L., 2012. The influence of selected chemical compounds used in winter road maintenance on the active capillarity of soils. Journal of Soils and Sediments, 13, 1, 64–71.
Dailey K.R., Welch K.A. & Lyons B.W., 2014. Evaluating the influence of road salt on water quality of Ohio rivers over time. Applied Geochemistry, 47, 25–35.
Dz.U. 2005 nr 230, poz. 1960. Rozporządzenie Ministra Środowiska z dnia 27 października 2005 r. w sprawie rodzajów i warunków stosowania środków, jakie mogą być używane na drogach publicznych oraz ulicach i placach.
Dz.U. 2006 nr 137, poz. 984. Rozporządzenie Ministra Środowiska z dnia 24 lipca 2006 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego.
Dz.U. 2016 poz. 1187. Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych.
Dz.U. 2017 poz. 2294. Rozporządzenie Ministra Zdrowia z dnia 7 grudnia 2017 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi.
Findlay S.E.G. & Kelly V.R., 2011. Emerging indirect and long-term road salt effects on ecosystems. Annals of the New York Academy of Sciences, 1223, 58–68.
Francois L.E. & Maas E.V., 1999. Crop Response and Management of Salt-Affected Soils. [in:] Pessarakli M. (ed.), Handbook of Plant and Crop Stress, Marcel Dekker, New York – Basel, 169–201.
Gałuszka A., Migaszewski Z.M., Podlaski R., Dołęgowska S. & Michalik A., 2011. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environmental Monitoring and Assessment, 176, 1–4, 451–464.
Godwin K.S., Hafner S.D. & Buff M.F., 2003. Long-term trends in sodium and chloride in the Mohawk River, New York: The effect of fifty years of road-salt application. Environmental Pollution, 124, 273–281.
Green S.M. & Cresser M.S., 2008. Nitrogen cycle disruption through the application of de-icing salts on upland highways. Water, Air and Soil Pollution, 188, 139–153.
Green S.M., Machin R. & Cresser M.S., 2008. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Environmental Pollution, 152, 20–31.
Hofman J., Trávníčková E. & Anděl P., 2012. Road salts effects on soil chemical and microbial properties at grass-land and forest site in protected natural areas. Plant, Soil and Environment, 58, 6, 282–288.
Hootman R.G., Kelsey P.D., Reid R. & von der Heide-Spravka K., 1994. Factors affecting accumulation of deicing salt in soils around trees. Journal of Arboriculture, 20, 3, 196–201.
ISO 9297:1989. Water quality – Determination of chloride – Silver nitrate titration with chromate indicator (Mohr’s method). International Organization for Standardization.
ISO 11265:1994. Soil quality – Determination of the specific electrical conductivity. International Organization for Standardization.
ISO 10693:1995. Soil quality – Determination of carbonate content – Volumetric method. International Organization for Standardization
.ISO 10390:2005. Soil quality – Determination of pH. International Organization for Standardization.
ISO 11464:2006. Soil quality – Pretreatment of samples for physico-chemical analysis. International Organization for Standardization.
ISO 23909:2008. Soil quality – Preparation of laboratory samples from large samples. International Organization for Standardization.
ISO 18400-104:2018. Soil quality – Sampling – Part 104: Strategies. International Organization for Standardization.
Jakubiak M. & Urbański K., 2015. Impact and range assessment of anthropogenic salinity in the vicinity of communication routes on the example of national road no. 79 in Kraków. Logistyka, 4, 8997–9004.
Kelly V.R., Lovett G.M., Weathers K.C., Findlay S.E.G., Strayer D.L., Burns D.J. & Likens G.E., 2008. Long-Term Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration. Environmental Science & Technology, 42, 410–415.
Kelly V.R., Findlay S.E.G., Schlesinger W.H., Menking K. & Chatrchyan A.M., 2010. Road Salt, Moving Toward the Solution. Special Report, Cary Institute of Ecosystem Studies.
Kelting D.L., Laxson C.L. & Yerger E.C., 2012. Regional analysis of the effect of paved roads on sodium and chloride in lakes. Water Research, 46, 2749–2758.
Kicińska A., 2016. Assessment of the road traffic impact on accumulation of selected elements in soils developed on Krynica and Bystrica subunit (Magura Nappe, Polish Outer Carpathians). Carpathian Journal of Earth and Environmental Sciences, 11, 1, 245–254.
Kocher B., Wessolek G. & Stoffregen H., 2005. Water and heavy metal transport in roadside soils. Pedosphere, 15, 74 6 –753.
Kołodziejczyk U. & Ćwiąkała M., 2009. Evaluation of the efficiency of use of aggregates and chemical compounds for winter road maintenance. Civil and Environmental Engineering Reports, 3, 67–76.
Komornicki T., 1986. Gleby Plant krakowskich. Roczniki Gleboznawcze, 37, 4, 187–200.
Komornicki T. & Oleksynowa K., 1989. Zawartość ołowiu i cynku w glebach Plant krakowskich. Roczniki Gleboznawcze, 40, 2, 213–226.
Lech M., Fronczyk J., Radziemska M., Sieczka A., Garbulew-ski K., Koda E. & Lechowicz Z., 2016. Monitoring of total dissolved solids on agricultural lands using electrical conductivity measurements. Applied Ecology and Environmental Research, 14, 4, 285–295.
Lis J. & Pasieczna A., 1995. Atlas geochemiczny Krakowa i okolic: 1:100 000. Wydawnictwo Kartograficzne Polskiej Agencji Ekologicznej, Warszawa.
Löfgren S., 2001. The Chemical Effects of Deicing Salt on Soil and Stream Water of Five Catchments in South-east Sweden. Water, Air, and Soil Pollution, 130, 1–4, 863–868.
Lumis G.P., Hofstra G. & Hall R., 1976. Roadside woody plant susceptibility to sodium and chloride accumulation during winter and spring. Canadian Journal of Plant Science, 56, 4, 853–859.
Mao Y., Sang S., Liu S. & Jia J., 2014. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China. Comptes Rendus Biologies, 337, 5, 332–337.
McBean E. & Al-Nassri S., 1987. Migration pattern of de-icing salts from roads. Journal of Environmental Management, 25, 3, 231–238.
Munck I.A., Bennett C.M., Camilli K.S. & Nowak R.S., 2010. Long-term impact of de-icing salts on tree health in the Lake Tahoe Basin: Environmental influences and interactions with insects and diseases. Forest Ecology and Management, 260, 1218–1229.
Munns R. & Termaat A., 1986. Whole-Plant Responses to Salinity. Australian Journal of Plant Physiology, 13, 1, 143–160.Norrman J., 2000. Slipperiness on roads – an expert system classification. Meteorological Applications, 7, 27–36.
Norrman J., 2000. Slipperiness on roads – an expert system classification. Meteorological Applications, 7, 27–36.
Novotny V., Muehring D., Zitomer D.H., Smith D.W. & Facey D., 1998. Cyanide and metal pollution by urban snow-melt: Impact of deicing compounds. Water Science and Technology, 38, 10, 223–230.
Perera N., Gharabaghi B. & Howard K., 2013. Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20 years. Journal of Hydrology, 479, 159–168.
Provin T. & Pitt J.L., 2019. Managing Soil Salinity. [on-line:] https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/86985/pdf_1397.pdf?sequence=1 [access: 17.04.2019].
Ramarkishana D.M. & Viraraghavatan T., 2005. Environmental Impact of Chemical Deicers – A Review. Water, Air, and Soil Pollution, 166, 1–4, 49–63.
Sitarski M., 2008. Charakterystyka warunków glebowych i szaty roślinnej w wybranych osiedlach mieszkaniowych Warszawy. Człowiek i Środowisko, 32, 1–2, 19–41.
Siyal A.A., Siyal A.G. & Abro Z.A., 2002. Salt affected soils their identification and reclamation. Pakistan Journal of Applied Sciences, 2, 5, 537–540.
Thunqvist E.L., 2004. Regional increase of mean chloride concentration in water due to the application of deicing salt. Science of the Total Environment, 325, 29–37.
Turunen M., 1997. Measuring salt and freezing temperature on roads. Meteorological Applications, 4, 11–15.
Vargas R., Pankova E.I., Balyuk S.A., Krasilnikov P.V. & Khasankhanova G.M. (eds.), 2018. Handbook for saline soil management. Food and Agriculture Organization of the United Nations, Lomonosow Moscow State University.
Yuan B.-C., Li Z.-Z., Liu H., Gao M. & Zhang Y.-Y., 2007. Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology, 35, 2, 319–328.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)