The impact of calcination on changes in the physical and mechanical properties of the diatomites of the Leszczawka Member (the Outer Carpathians, Poland)

Authors

  • Beata Figarska-Warchoł AGH University of Science and Technology Faculty of Geology, Geophysics and Environmental Protection Department of Economic and Mining Geology al. A. Mickiewicza 30 30-059 Krakow http://orcid.org/0000-0002-6962-1775
  • Marek Rembiś AGH University of Science and Technology Faculty of Geology, Geophysics and Environmental Protection Hydrogeology and Engineering Geology Department al. A. Mickiewicza 30 30-059 Krakow http://orcid.org/0000-0003-2879-3949
  • Grażyna Stańczak AGH University of Science and Technology Faculty of Geology, Geophysics and Environmental Protection Department of Economic and Mining Geology al. A. Mickiewicza 30 30-059 Krakow http://orcid.org/0000-0002-6618-5998

DOI:

https://doi.org/10.7494/geol.2019.45.4.269

Keywords:

silica, thermal modification, scanning electron microscopy, Vickers microindentation hardness, porosity, apparent density, water absorption

Abstract

The work concerned the effects of the thermal treatment of diatomites from the Jawornik deposit (an example of the diatomites of the Leszczawka Member of the Polish Outer Carpathians). Five distinct lithological varieties were subjected to calcination at 600°C in ambient air. The thermal impact induced the following changes to the rocks. Their overall rock porosity increased, most distinctly in the initially softer varieties, and the internal pores of the siliceous frustules themselves usually became larger due to the initial melting of the silica phases. Most of the diatoms, quartz and feldspars cracked as a result of their brittle fracturing under compressive strain resulting from substantial and differing size changes of growing grains. Clay minerals were thermally transferred, changing their volume. The organic matter dispersed throughout the diatomites was partly oxidized and removed. At the same time, the structure of the rocks was strengthened, as confirmed by an increase in their microhardness. The microhardness of soft and porous diatomite varieties increased considerably on heating, but that of the hard and compact variety changed to a smaller degree. The increase is directly related to the content of the clay minerals. The impact of other mineral components was not detected. The calcination of lithologically diversified diatomites provided the mineral with raw material with deicing and antisliding properties. The technology of its production has been determined by the authors and submitted as a patent.

Downloads

Download data is not yet available.

References

Abrantes F., Lopes C., Mix A. & Pisias N., 2007. Diatoms in Southeast Pacific surface sediments reflect environmental properties. Quaternary Science Reviews, 26, 155–169.

Aruntaş H.Y., Albayrak M., Saka H.A. & Tokyay M., 1998. Investigation of diatomite properties from Ankara-Kızılcahamam and Çankırı-Çerkeş regions. Turkish Journal of Engineering and Environmental Sciences, 22, 337–343.

Cummins A.B., 1973. Development of diatomite filter aid filtration. Filtration and Separation, 10, 2, 215–219.

Deeny S., Stratford T., Dhakal R.P., Moss P.J. & Buchanan A.H. 2009. Spalling of concrete: implications for structural performance in fire. [in:] Wald F., Kallerová P., Chlouba J. (eds.), Proceedings of International Conference in Prague, 19–20 February 2009: Applications of Structural Fire Engineering, Czech Technical University in Prague, Prague, 202–207.

Ediz N., Bentli İ. & Tatar İ., 2010. Improvement in filtration characteristics of diatomite by calcination. International Journal of Mineral Processing, 94, 129–134.

EN-13755:2008. Natural stone test methods – Determination of water absorption at atmospheric pressure. CEN European Committee for Standarization.

EN-1936:2006. Natural stone test methods – Determination of real density and apparent density, and of total and open porosity. CEN European Committee for Standarization.

Figarska-Warchoł B., Stańczak G., Rembiś M. & Toboła T., 2015. Diatomaceous rocks of the Jawornik deposit (the Polish Outer Carpathians): petrophysical and petrographical evaluation. Geology, Geophysics & Environment, 41, 4, 311–331.

Fustinoni S., Campo L., Colosio C., Birindelli S. & Foa V., 2005. Application of gas chromatography-mass spectrometry for the determination of urinary ethylenethiourea in humans. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 814, 2, 251–258.

Fuya W., Huifen Z., Huang F., Guoxi C., Deqiang W. & Hongping H., 1995. A mineralogical study of diatomite in Leizhou Peninsula. Chinese Journal of Geochemistry, 14, 140–151.

Gao B., Jiang P., An F., Zhao S. & Ge Z., 2005. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol. Applied Surface Science, 250, 273–279.

Germanovich L.N., 1997. Thermal Spalling of Rocks. [in:] Karihaloo Bhushan L. (ed.), Advances in fracture research: proceedings of the Ninth International Conference on Fracture; 1 – 5 April 1997, Sydney, Australia, Pergamon, Amsterdam, 2771–2782.

Goren R., Baykara T. & Marsoglu M., 2002. Effects of purification and heat treatment on pore structure and composition of diatomite. British Ceramic Transactions, 101, 177–180.

Haluska M.S., Dragomir-Cernatescu I.C., Sandhage K.H., & Snyder R.L., 2005. X-ray diffraction analysis of 3-D MgO diatom replicas synthesized by low-temperature gas/solid displacement reaction. Powder Diffraction, 20, 4, 306–310.

Hassan M.S., Ibrahim I.A. & Ismael I.S., 1999. Diatomaceous deposits of Fayium, Egypt: Characterization and evaluation for industrial application. Chinese Journal of Geochemistry, 18, 233–241.

Ibrahim S.S. & Selim A.Q., 2010. Producing a micro-porous diatomite by a simple classification-calcinations process. The Journal of Ore Dressing, 12, 23, 24–32.

Jucha S. & Kotlarczyk J., 1961. Seria menilitowo-krośnieńska w Karpatach fliszowych. Prace Geologiczne PAN, Oddział w Krakowie, Komisja Nauk Geologicznych, 4, Wydawnictwa Geologiczne, Warszawa.

Khraisheh M.A.M., Al-Ghouti M.A., Allen S.J. & Ahmad M.N., 2005. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Research, 39, 922–932.

Klobes P., Meyer K. & Munro R.G., 2006. Porosity and specific surface area measurements for solid materials. NIST Recommended Practice Guide, NIST Special Publication, 960, 17, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology.

Koszarski L. & Żytko K., 1961. Łupki jasielskie w serii menilitowo-krośnieńskiej w Karpatach środkowych [Jasło Shales within the Menilite-Krosno Series in the Middle Carpathians]. Biuletyn Instytutu Geologicznego, 166, 87–232.

Kotlarczyk J., 1955. O występowaniu diatomitu we fliszu Karpat polskich. Przegląd Geologiczny, 5, 244.

Kotlarczyk J., 1966. Poziom diatomitowy z warstw krośnieńskich na tle budowy geologicznej jednostki skolskiej w Karpatach polskich. Studia Geologica Polonica, 19, 1–129.

Kotlarczyk J., 1982. The role of diatoms in sedimentation and biostratigraphy of the Polish Flysch Carpathians. Acta Geologica Academiae Scientiarum Hungaricae, 25, 1–2, 9–21.

Kotlarczyk J., 1988a. Jawornik Ruski – kopalnia diatomitu. Poziom diatomitów z Leszczawki, najmłodsza olistostroma we fliszu. [in:] Kotlarczyk J., Pękala K. & Gucik S. (red.), Karpaty przemyskie: przewodnik LIX Zjazdu Polskiego Towarzystwa Geologicznego, [Przemyśl] 16-18 września 1988, Wydawnictwa AGH, Kraków, 115–118.

Kotlarczyk J., 1988b. Poziom diatomitów z Leszczawki. Punkt B-3. Jawornik Ruski. 1. Geologia i własności surowca. [in:] Kotlarczyk J., Pękala K. & Gucik S. (red.), Karpaty przemyskie: przewodnik LIX Zjazdu Polskiego Towarzystwa Geologicznego, [Przemyśl] 16-18 września 1988, Wydawnictwa AGH, Kraków, 149–154.

Kotlarczyk J., Brożek M. & Michalski M., 1986. Diatomity polskich Karpat – występowanie, jakość, przeróbka i zastosowania. Gospodarka Surowcami Mineralnymi, 2, 3–4, 497–523.

Kotlarczyk J. & Leśniak T., 1990. Dolna część formacji menilitowej z poziomem diatomitów z Futomy w jednostce skolskiej polskich Karpat. Wydawnictwa AGH, Kraków.

Li X., Li X. & Wang G., 2007. Surface modification of diatomite using polyaniline. Materials Chemistry and Physics, 102, 140–143.

Malata T., 1996. Analiza formalnych wydzieleń litostratygraficznych oraz propozycja podziału jednostki skolskiej polskich Karpat fliszowych. Przegląd Geologiczny, 44, 5, 509–513.

Malata T. & Poprawa P., 2006. Ewolucja subbasenu skolskiego. [in:] Oszczypko N., Uchman A. & Malata E. (red.), Rozwój paleotektoniczny basenów Karpat zewnętrznych i pienińskiego pasa skałkowego, Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego, Kraków, 103–110.

Marcinowski R., Mardal R. & Piotrowska K., 2011. Słownik jednostek litostratygraficznych Polski. Wersja podstawowa (grudzień 2004–2011). PIG, [on-line:] http://slp.pgi. gov.pl/index.php [October 2013].

Martinovic S., Vlahovic M., Boljanac T. & Pavlovic L., 2006. Preparation of filter aids based on diatomites. International Journal of Mineral Processing, 80, 255–268.

Mohamedbakr H. & Burkitbaev M., 2009. Elaboration and characterization of natural diatomite in Aktyubinsk/ Kazakhstan. Open Mineralogy Journal, 3, 12–16.

Murer A., McClennen K., Ellison T., Timmer R., Larson D., Wolcott K., Walker T., Thomsen M., 2000. Steam injection project in heavy-oil diatomite. SPE Reservoir Evaluation & Engineering, 3, 2–12.

Obanijesu E.O., Bello O.O., Osinowo F.A.O. & Macaulay S.R.A., 2004. Development of a packed-bed reactor for the recovery of metals from industrial wastewaters. International Journal of Environment and Pollution, 22 (6), 701–709.

Oszczypko N., 2008. Outher Carpathians in Poland. [in:] McCann T. (ed.), The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic, Geological Society, London, 1078–1081.

Posi P., Lertnimoolchai S., Sata V., Phoo-ngernkham T. & Chindaprasirt P., 2014. Investigation of properties of lightweight concrete with calcined diatomite aggregate. KSCE Journal of Civil Engineering, 18, 5, 1429–1435.

Rauenzahn R.M. & Tester J.W. 1989. Rock failure mechanisms of flame-jet thermal spallation drilling – theory and experimental testing. International Journal of Rock Mechanics and Mining Sciences, 26, 381–399.

Robertson E.C. 1988. Thermal properties of rock. United States Department of The Interior, Geological Survey. Open-File Report 88–441, United States Department of the Interior Geological Survey.

Russocki Z., 1981.Zmienność diatomitów w złożu Leszczawka. [in:] Szymańska A. (red.), Nowe kierunki zastosowań diatomitów polskich w gospodarce narodowej: konferencja naukowo-techniczna, Przemyśl, 23–24 maja 1980, Wydawnictwa Geologiczne, Warszawa, 30–40.

Sandhage K.H., Dickerson M.B., Huseman P.M., Caranna M.A., Clifton J.D., Bull T.A., Heibel T.J., Overton W.R. & Schoenwaelder M.E.A., 2002. Novel, Bioclastic route to self-assembled, 3-D, chemically tailored meso/ nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Advanced Materials, 14, 6, 429–433.

Smoleńska A. & Rembiś M., 2002. Diatomit jako lekkie kruszywo mineralne w tynkach renowacyjnych. [in:] Kruszywa mineralne: surowce, rynek, technologie, jakość: Polanica Zdrój 17–19 kwietnia 2002, Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 97. Konferencje, 33, Oficyna Wydawnicza PW, Wrocław, 197–203.

Stańczak G., Rembiś M., Figarska-Warchoł B. & Toboła T., 2015. Fractal characteristics of the pore network in diatomites using mercury porosimetry and image analysis. [in:] Polychroniadis E.K., Oral A.Y. & Ozer M. (eds.), 2nd International Multidisciplinary Microscopy and Microanalysis Congress, Proceedings of InterM, October 16–19, 2014, Springer Proceedings in Physics, 164, Springer International Publishing, 79–89.

Stoch L., 1974. Minerały ilaste. Wydawnictwa Geologiczne, Warszawa.

Sun Z., Zhang Y., Zheng S., Park Y. & Frost R.L., 2013. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochimica Acta, 558, 16–21.

Szydło A., Garecka M., Jankowski L. & Malata T., 2014. Paleogene microfossils from the submarine debris flows in the Skole Basin (Polish and Ukraine Outer Carpathians). Geology, Geophysics & Environment, 40, 1, 49–65.

Toboła T., Rembiś M., Figarska-Warchoł B. & Stańczak G., 2015. Fibrous growth of chloride minerals on diatomite saturated with a brine. [in:] Polychroniadis E.K., Oral A.Y. & Ozer M. (eds.), 2nd International Multidisciplinary Microscopy and Microanalysis Congress, Proceedings of InterM, October 16–19, 2014, Springer Proceedings in Physics, 164, Springer International Publishing, 73–78.

Winkler E.M., 1997. Stone in Architecture: Properties, Durability. 3 ed. Springer, Berlin.

Wu J., Yang Y.S. & Lin J., 2005. Advanced tertiary treatment of municipal wastewater using raw and modified diatomite. Journal of Hazardous Materials, 127, 196–203.

Xiong W. & Peng J., 2008. Development and characterization of ferrihydrite-modiffied diatomite as a phosphorus adsorbent. Water Research, 42, 4869–4877.

Yarusova S.B., Cherepanova M.V., Gordienko P.S. & Pushkar V.S., 2012. Sintez vollastonita iz prirodnogo dioksida kremniyai tekhnogennykh otkhodov. Ekologiya i Promyshlennoct’ Rossii, 2, 24–27 [Ярусова С.Б., Черепанова М.В., Гордиенко П.С., Пушкарь В.С., 2012. Синтез волластонита из природного диоксида кремния и техногенных отходов. Экология и промышленность России, 2, 24–27].

Yılmaz B. & Ediz N., 2008. The use of raw and calcined diatomite in cement production. Cement & Concrete Composites, 30, 202–211.

Zheng R., Ren Z., Gao H., Zhang A. & Bian Z., 2018. Effects of calcination on silica phase transition in diatomite. Journal of Alloys and Compounds, 757, 364–371.

Zhi-Yang W., Li-Ping Z., Yu-Xiang Y., 2009. Structural investigation of some important Chinese diatomites. Glass Physics and Chemistry, 35, 6, 673–679.

Żgiet J., 1963. Spostrzeżenia nad sedymentacją wkładek diatomitów i tufów w Karpatach. Kwartalnik Geologiczny, 7, 714–715.

Downloads

Published

2020-01-25

How to Cite

Figarska-Warchoł, B., Rembiś, M., & Stańczak, G. (2020). The impact of calcination on changes in the physical and mechanical properties of the diatomites of the Leszczawka Member (the Outer Carpathians, Poland). Geology, Geophysics and Environment, 45(4), 269. https://doi.org/10.7494/geol.2019.45.4.269

Issue

Section

Articles