Characterisation of used traction sand for utilization aspects in earth construction based on the requirements of Finnish environmental legislation

Risto Pöykiö, Mika Grönvall, Gary Watkins, Ilkka Välimäki, Paavo Perämäki, Olli Dahl

Abstract


Finland launched a new Government Decree, the so-called MARA-regulation, on the utilization of certain wastes in earth construction on 1.1.2018. This statutory regulation sets limit values for the solubility of heavy metals (Sb, As, Ba, Cd, Cr, Cu, Pb, Mo, Ni, Se, Zn, V, Hg), chloride, sulphate, fluoride and dissolved organic carbon, as well as for organic substance (petroleum hydrocarbons, benzene, naphthalene, TEX (toluene, ethylbenzene and xylene), PAH-, phenolic- and PCB-compounds). In this case study, the concentrations of these harmful substances in the used traction sand collected in the city of Kemi, Northern Finland, were lower than their limit values set in the MARA-regulation. Therefore, this residue is a potential material to be used at earth construction sites such as in roads and roadways, in field and embankment structures, as well as in floor structures of industrial or storage buildings. However, if the used traction sand is to be utilized for these kinds of civil engineering purposes, an environmental permit is still needed because this material is not yet included in the scope of the MARA-regulation. This paper also gives an overview of the relevant Finnish environmental legislation on the utilization of wastes as an earth construction material.


Keywords


BCR extraction, circular economy, civil engineering, construction, MARA-regulation, recycled material, waste

Full Text:

PDF

References


Adamiec E., 2017. Chemical fractionation and mobility of traffic-related elements in road environments. Environmental Geochemistry Health, 39, 6, 1457–1468. DOI: https://doi.org/10.1007/s10653-017-9983-9.

Botsou F., Sungur A., Kelepertzis E. & Soylak M., 2016. Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica’s region, Greece. Ecotoxicology and Environmental Safety, 132, 101–110. DOI: https://doi.org /10.1016/j.ecoenv.2016.05.032.

Cocârţă d.m., Stoian M.A. & Karademir A., 2017. Crude oil contaminated sites: Evaluation by using risk assessment approach. Sustainability, 9, 8, art. no. 1365, 16 p. DOI: https://doi.org/10.3390/su9081365.

Filgueiras A.V., Lavilla I. & Bendicho C., 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 6, 823–857. DOI: https://doi.org/10.1039/b207574 c.

Finlex, 2017. Valtioneuvoston asetus eräiden jätteiden hyödyntämisestä maarakentamisessa (843/2017). Annettu 7 päivänä joulukuuta 2017 [Government Decree on the Recovery of Certain Wastes in Earth Construction (843/2017]. Ministry of the Environment, Finland, Helsinki, 7 December 2017, [on-line:] https://www.finlex.fi/fi/laki/alkup/2017/20170843 [access 31.01.2018].

Gaudino S., Galas C., Belli M., Barbizzi S., de Zorzi P., Jaćimović R., Jeran Z., Pati A. & Sansone U., 2007. The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results. Accreditation and Quality Assurance, 12, 2, 84–93. DOI: https://doi.org/10.1007/s00769-006-0238-1.

Gomes Correia A., Winter M.G. & Puppala A.J., 2016. A re-view of sustainable approaches in transport infrastructure geotechnics. Transportation Geotechnics, 7, 21–28. DOI: https://doi.org/10.1016/j.trgeo.2016.03.003.

Gruszecka-Kosowska A. & Mikoda B., 2015. Commercial utilization of mineral waste: review of analysis methods determining its compliance with environmental laws. Geology, Geophysics & Environment, 41, 3, 263–274. DOI: http://dx.doi.org/10.7494/geol.2015.41.3.263.

Gruszecka-Kosowska A., Wdowin M., Kosowski T. & Klimek A., 2015. An analysis of the chemistry, mineralogy and texture of waste dolomite powder used to identify its potential application in industry. Geology, Geophysics & Environment, 41, 4, 343–352. DOI: http://dx.doi.org/10.7494/geol.2015.41.4.343.

Helios Rybicka E. & Calmano W., 1988. Changes in physico-chemical properties of some clay minerals by reducing extraction reagents. Applied Clay Sciences, 3, 1, 75–84. DOI: https://doi.org/10.1016/01691317(88)90007-5.

Kaakinen J., 2016. Öljyllä ja raskasmetalleilla pilaantuneita maita koskevan ympäristölainsäädännön ja lupamenettelyn edistäminen kemiallisella tutkimuksella [Chemical studies of oil and heavy metals contaminated soils to promote environmental legislation and permit process]. University of Oulu, Oulu, Finland [Ph.D.thesis], [on-line:] http://urn.fi/urn:isbn:9789526211589 [access: 15.04.2016].

Kaila O., 2015. Hiekoitussepelin elinkaari ja uusiokäyttö Turun kaupungissa [The life-cycle and material recovery of anti-skid aggregate in the city of Turku]. Turku University of Applied Sciences, Turku, Finland [Bachelor’s thesis], [on-line:]: https://www.theseus.fi/han-dle/10024/96133 [access 10.05.2018].

Kilpimaa S., Kuokkanen T. & Lassi U., 2013. Characterization and utilization potential of wood ash from combustion process and carbon residue from gasification process. BioResources, 8, 1, 1011–1027.

Kosson D.S., van der Sloot H.A., Sanchez F. & Garrabrants A.C., 2002. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science, 19, 3, 159–204. DOI: https://doi.org/10.1089/109287502760079188.

Kuokkanen M., 2013. Development of an eco- and material-efficient pellet production chain – A chemical study. University of Oulu, Oulu, Finland [Ph.D. thesis], [on-line:] http://urn.fi/urn:isbn:9789526201047 [access 26.04.2013].

Kupiainen K., Tervahattu H. & Räisänen M., 2003. Experimental studies about the impact of traction sand on urban road dust composition. The Science of Total Environment, 308, 1–3, 175–184. DOI: https://doi.org/10.1016/S0048-9697(02)00674-5.

Mummullage S., Egodawatta P., Ayoko G.A. & Goonetilleke A., 2016. Sources of hydrocarbons in urban road dust: Identification, quantification and prediction. Environmental Pollution, 216, 80–85. DOI: https://doi.org/10.1016/j.envpol.2016.05.042.

Norman M., Sundvor I., Dendy B.R., Johansson C., Gustafsson M., Blomqvist G. & Janhäll S., 2016. Modelling road dust emission abatement measures using the NORTRIP model: Vehicle speed and studded tyre reduction. Atmospheric Environment, 134, 96–108. DOI: https://doi.org/10.1016/j.atmosenv.2016.03.035.

Paxal P., 2012.Öljyllä saastuneiden maanäytteiden alifaattisten öljyhiilivetyjen ja PAH-yhdisteiden määrittäminen GC-FID- ja GC-MS-tekniikalla [Determination of aliphatic petroleum hydrocarbons and PAHs from oil-contaminated soil samples by GC-FID and GC-MS]. Metropolia University of Applied Sciences, Helsinki, Finland [Bachelor’s thesis], [on-line:] https://www.the-seus.f i/hand le/10024/48726 [access 15.02.2017].

Ptistišek N., Milačič R. & Veber M., 2001. Use of the BCR three-step sequential extraction procedure for the study of the partitioning of Cd, Pb and Zn in various soil samples. Journal of Soils and Sediments, 1, 1, 25–29. DOI: https://doi.org/10.1007/BF02986466.

Rao C.R.M., Sahuquillo A. & Lopez Sanchez J.F., 2008. A re-view of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air and Soil Pollution, 189, 1–4, 291–333. DOI: https://doi.org/10.1007/s11270-007-9564-0.

Rocco M. & Rubio M.A., 2009. Reinterpretation of the first step of the sequential extraction proposed by the SMT. Journal of Chilean Chemical Society, 54, 3, 323–326. DOI: http://dx.doi.org/10.4067/S071797072009000300025.

Rodgers K.J., Hursthouse A. & Cuthbert S., 2015. The potential of sequential extraction in the characterisation and management of wastes from steel processing: A prospective review. International Journal of Environmental Research and Public Health, 12, 9, 11724–11755. DOI: https://doi.org/10.3390/ijerph120911724.

Räisänen M.L., Kauppila P.M. & Myöhänen T., 2010. Suitability of static tests for acid rock drainage assessment of mine waste rock. Bulletin of the Geological Society of Finland, 82, 2, 101–111. DOI: https://doi.org/10.17741/bgsf/82.2.003.

Saitta E.K.H., Gittings M.J., Clausen C., Quinn J. & Yestrebsky C.L. 2014. Laboratory evaluation of a prospective remediation method for PCB-contaminated paint. Journal of Environmental Health Science & Engineering, 12, 1, art. no. 57, 5 p. DOI: http://www.ijehse.com/con-tent/12/1/57.

Sinkkonen A., Kauppi S., Simpanen S., Rantalainen A.L., Strömmer R. & Romantschuk M. 2012. Layer of organic pine forest soil on top of chlorophenol-contaminated mineral soil enhances contaminant degradation. Environ-mental Science and Pollution Research, 20, 3, 1737–1745. DOI: https://doi.org/10.1007/s11356-012-1047-1.

Smichowski P., Polla G. & Gómez D., 2005. Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review. Analytical and Bioanalytical Chemistry, 381, 2, 302–316. DOI: https://doi.org/10.1007/s00216-004-2849-x.

Sormunen L.A. & Rantsi R., 2015. To fractionate municipal solid waste incineration bottom ash: Key for utilisation? Waste Management Research, 33, 11, 995–1004. DOI: https://doi.org/10.1177/0734242X15600052.

Tokalioğlu Ş., Kartal Ş. & Birol G., 2003. Application of a three-stage sequential extraction procedure for the determination of extractable metal contents in highway soils. Turkish Journal of Chemistry, 27, 3, 333–346.




DOI: https://doi.org/10.7494/geol.2019.45.2.99

Refbacks

  • There are currently no refbacks.