Use of the gas chromatographic method for the denitrification process assessment in groundwater of the Triassic aquifer in Opole region (southern Poland)

Authors

  • Anna ŻUREK Akademia Górniczo-Hutnicza, Wydział Geologii, Geofizyki i Ochrony Środowiska; al. Mickiewicza 30, 30-059 Kraków
  • Paweł MOCHALSKI Instytut Fizyki Jądrowej Polskiej Akademii Nauk; ul. Radzikowskiego 152, 31-342 Kraków

DOI:

https://doi.org/10.7494/geol.2010.36.1.135

Keywords:

nitrate, denitrification, gas chromatographic method, MGWB 333, Opole region

Abstract

The studied aquifer - Major Groundwater Basin (MGWB) 333 is located near Opole in Muschelkalk carbonate rocks. The hydrological conditions of the investigated area are determined by monoclinal structure of the geological formations. On the outcrop of the Muschelkalk formation, the aquifer is unconfined and the recharge rate and conductivity are relatively high. In the northern part of the aquifer, which is covered with a confining unit of the Keuper formation, the average hydraulic conductivity and the flow velocity decrease. Nitrates have been the main indicator of groundwater contamination. The high NO3 concentrations which are observed in the outcrop area decrease significantly in the zone near the border of the Kauper extent. There are two main reasons of the nitrate concentration decline: denitrification process and groundwater age. Denitrification was identified using data on dissolved gas concentrations which were detected and quantified by gas chromatographic method. The expected denitrification effects have been observed in the samples from transitional zone of the Triassic aquifer.

Downloads

Download data is not yet available.

References

Aeschbach-Hertig W., Peeters F., Beyerle U. & Kipfer R., 1999. Interpretation of dissolved atmospheric noble gases in natural waters. Water Resources Research, 35 (9), 2779–2792.

Aeschbach-Hertig W., Peeters F., Beyerle U. & Kipfer R., 2000. Paleotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature, 405, 1040–1044.

Barabasz W., 1985. Denitryfikacja w Świetle współczesnych badań mikrobiologicznych i ekologicznych. Postępy Mikrobiologii, 24, 1–2, 83–101.

Chmura W., Duliński M., Różański K., Żurek A., Kryza J. & Weise S., 2003. Wstępne wyniki pomiarów składu izotopowego azotanów rozpuszczonych w wodach podziemnych GZWP 333. Współczesne problemy hydrogeologii, 11, 2, 73–80.

Cook G.P. & Herczeg A.L., 2000. Environmental tracers in subsurface hydrology. Boston, Kluwer Academic Publishers.

Feast N.A., Hiscock K.M., Dennis P.F. & Andrews J.N., 1998. Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. Journal of Hydrology, 211, 233–252.

Heaton T.H.E., Talma A.S. & Vogel J.C., 1983. Origin and history of nitrate in confined groundwater in the western Kalahari. Journal of Hydrology, 62, 243–262.

Keeney D.R., 1989. Sources of nitrate to ground water. W: Follett R.F. (Ed.), Nitrogen management and ground water protection, Ser. Developments in agricultural and managed – forest ecology, No 21, Elsevier, 23–33.

Kendall C., Elliott E.M. & Wankel S.D., 2007. Tracing anthropogenic inputs of nitrogen to ecosystems, W: Michener R. & Lajtha K. (Eds), Stable Isotopes in Ecology and Environmental Science, Blackwell Publishing, 375–449.

Kleczkowski A.S. et al., 1988. Ochrona Środowiska wód podziemnych regionu kredy opolskiej. IHiGI AGH, Kraków (materiały archiwalne).

Kolle W., Werner P., Strebel O. & Bottcher J., 1983. Denitrifikation in einem reduzieren den Grundwasserleiter. Vom Wasser, 61, 125–147.

Kryza J., & Staśko S., 2000. Groundwater flow rate and contaminant migration in fissure-karstic aquifer of Opole Triassic System. Environmental Geology, 39 (3–4), 384–389.

Kuc T., Rozanski K, Chmura W., Klisch M., Żurek A. & Chmiel M., 2007. Nitrates in the Opole-Zawadzkie Groundwater System, South-Western Poland: an Isotopic Study, Polish Journal of Environmental Studies, 16, 3B, 261–266.

Lorenc H. (red.), 2005. Atlas klimatu Polski. IMGW, Warszawa.

Lowrance R.R. & Pionke H.B., 1989. Transformations and movement of nitrate in aquifer systems. W: Follett R.F. (Ed.), Nitrogen management and ground water protection, Ser. Developments in agricultural and managed – forest ecology, No 21, Elsevier, 374–392.

Mariotti A., 1986. La denitrification dans les eaux souterraines. Principes et methodes de son identification – une revue. Journal of Hydrology, 88, 1–23.

Mochalski P. & Śliwka I., 2008. Simultaneous Determination of Ne, Ar, CFC-11, CFC-12 and SF6 in Groundwater Samples by Gas Chromatography. Chemia Analityczna – Chemical Analysis, 53, 651–658.

Mochalski P., Lasa J. & Śliwka I., 2006. Simultaneous Determination of Ne, Ar, and N2 in Groundwater by Gas Chromatography. Chemia Analityczna – Chemical Analysis, 51, 825–831.

Mochalski P., Śliwka I. & Lasa J., 2007. Chromatograficzna metoda jednoczesnego oznaczania Ne, Ar, SF6, freonu 11 i freonu 12 w wodach podziemnych. Współczesne problemy hydrogeologii, 13, 2, 285–292.

Plummer L.N., Michel R.L., Thurman E.M. & Glynn P.D., 1993. Environmental tracers forage dating young ground water. W: Alley W.M. (Ed.), Regional Ground-Water Quality, Van Nostrand Reinhold, New York, 255–294.

Poprawski L., 1987. Wpływ budowy geologicznej na kształtowanie się warunków hydrogeologicznych w dolinie Odry między Krapkowicami a ujściem Nysy Kłodzkiej. Instytut Nauk Geologicznych Uniwersytetu Wrocławskiego, Wrocław (praca doktorska).

Porcelli D., Ballentine C.J., & Wieler R., 2002. Noble gases in geochemistry and cosmochemistry. The Mineralogical Society of America, Washington.

Różański K. & Żurek A., 2001. Identyfikacja pochodzenia azotanów w wodach podziemnych na podstawie ich składu izotopowego. Współczesne problemy hydrogeologii, 10, 2, 403–412.

Różański K., Kuc T., Chmura W., Klisch M., Żurek A. & Chmiel M., 2007. Zanieczyszczenie azotanami zbiornika wód podziemnych GZWP 333 Opole-Zawadzkie w Świetle badań izotopowych. Współczesne problemy hydrogeologii, 13, 2, 313–324.

Santoro A.E., 2009. Microbial nitrogen cycling at the saltwater-freshwater interface. Hydrogeology Journal, 18, 187–202.

Singleton M.J., Esser B.K., Moran J.E., Hudson G.B., McNab W.W. & Harter T., 2007. Saturated Zone denitrification: Potential for natural attenuation of nitrate contamination in shallow groundwater under dairy operations. Environmental Science & Technology, 41, 759–765.

Śliwka I., & Lasa J., 2000. Optimisation of the head-space method in measurements of SF6 concentration in water. Chemia Analityczna – Chemical Analysis, 45, 59–72.

Staśko S., 1992. Wody podziemne w węglanowych utworach triasu Opolskiego. Prace Geologiczno-Mineralogiczne, XXXII, Acta Universitas Wratislaviensis, 1407, 1–74.

Stumm W. & Morgan J.J., 1981. Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. Wiley InterScience, New York.

Weiss R.F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Research, 17, 721–735.

Zuber A., Witczak S., Różański K., Śliwka I., Opoka M., Mochalski P., Kuc T., Karlikowska J., Kania J., Jackowicz-Korczyński M. & Duliński M., 2005. Groundwater dating with 3H and SF6 in relation to mixing patterns, transport modeling and hydrochemistry. Hydrological Processes, 19, 2247–2275.

Żurek A., 1995. Kształtowanie się jakości wody w dużym zbiorniku wód podziemnych w warunkach intensywnej eksploatacji. Wydział GGiOŚ AGH, Kraków (praca doktorska).

Żurek A., 2002. Azotany w wodach podziemnych. Biuletyn Państwowego Instytutu Geologicznego, 400, 114–141.

Downloads

Published

2010-01-01

Issue

Section

Articles

How to Cite

ŻUREK, A., & MOCHALSKI, P. (2010). Use of the gas chromatographic method for the denitrification process assessment in groundwater of the Triassic aquifer in Opole region (southern Poland). Geology, Geophysics and Environment, 36(1), 135. https://doi.org/10.7494/geol.2010.36.1.135