Toxicological assessment of pesticide contaminated soils with use of biotests

Authors

  • Tomasz Baczyński Institute of Water Supply and Environmental Protection, Faculty of Environmental Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow
  • Anna Małachowska-Jutsz Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice
  • Ewa Szalińska Department of Environment Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Krakow

DOI:

https://doi.org/10.7494/geol.2018.44.2.245

Keywords:

soil toxicity, bioassays, obsolete pesticides, bioavailability

Abstract

The paper presents the results of experiments on ecological toxicity assessment performed for 12 soil samples collected at 3 obsolete pesticide “tombs” in Poland, before their final disposal. Bioavailability of the main pollutants: p,p’-DDT, lindane and methoxychlor was assessed for selected samples by consecutive solid phase extraction using a Tenax TA sorbent. Several toxicity bioassays were also carried out, including: reducers (Microtox Soild Phase), producers (Phytotox) and consumers (tests of avoidance, acute toxicity and reproduction with use of the earthworm Eisenia foetida). Data from toxicity tests were discussed against the results of the chemical analysis of a wide range of pesticides determined by GC-ECD and GC-NPD. This part of the study enabled the evaluation of the applicability of the aforementioned bioassays in the assessment of pesticide soil pollution. Results of toxicity tests showed a slight to severe impairment of habitat function for all of the contaminated samples, which was only partially reflected by the analytical data. The most sensitive biotest was earthworm reproduction, followed by Phytotox and earthworm acute toxicity. Earthworm avoidance and Microtox tests were found to be of rather limited usability.

Downloads

Download data is not yet available.

References

Baczynski T.P., Pleissner D. & Krylow M., 2012. Bioremediation of chlorinated pesticides in field-contaminated soils and suitability of Tenax solid-phase extraction as a predictor of Its effectiveness. CLEAN–Soil, Air, Water, 40, 8, 864–869.

Baczyński T., 2010. Bioremediacja gruntow zanieczyszczonych pestycydami chlorowanymi: przegląd technologii zastosowanych w pełnej skali. Przemysł Chemiczny, 89, 1, 61–65.

Bettiol C., De Vettori S., Minervini G., Zuccon E., Marchetto D., Ghirardini A.V. & Argese E., 2016. Assessment of phenolic herbicide toxicity and mode of action by different assays. Environmental Science and Pollution Research, 23, 8, 7398–7408.

Bojakowska I., Tomassi-Morawiec H. & Markowski W., 2018. PAHs and DDTs in soil and sediment of inland water bodies of Warsaw city and its surroundings. Journal of Geochemical Exploration, 187, 57–71.

Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T.A., Guerra R. & Iacondini A., 2005. Effect of sediment turbidity and color on light output measurement for Microtox ® Basic Solid-Phase Test. Chemosphere, 60, 1, 9–15.

Cornelissen G., van Noort P. & Govers H.A., 1997. Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: sediment extraction with Tenax® and effects of contact time and solute hydrophobicity. Environmental Toxicology and Chemistry, 16, 7, 1351–1357.

Correia F.V. & Moreira J.C., 2010. Effects of glyphosate and 2, 4-D on earthworms (Eisenia foetida) in laboratory tests. Bulletin of Environmental Contamination and Toxicology, 85, 3, 264–268.

El-Temsah Y.S. & Joner E.J., 2013. Effects of nano-sized zero- valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere, 92, 1, 131–137.

Gałuszka A., Migaszewski Z.M. & Manecki P., 2011. Pesticide burial grounds in Poland: a review. Environment International, 37, 7, 1265–1272.

Ghosh S.K., Doctor P.B., Bhatnagar V.K., Yadav S., Derasari A., Kulkarni P.K. & Kashyap S.K., 1997. Response of three microbial test systems to pesticides. Bulletin of Environmental Contamination and Toxicology, 58, 3, 482–488.

Grabińska-Sota E., Wiśniowska E. & Kalka J., 2003. Toxicity of selected synthetic auxines – 2, 4-D and MCPA derivatives to broad-leaved and cereal plants. Crop Protection, 22, 2, 355–360.

Hund-Rinke K. & Wiechering H., 2001. Earthworm avoidance test for soil assessments. Journal of Soils and Sediment, 1, 1, 15–20.

Jensen J. & Mesman M., 2006. Ecological risk assessment of contaminated land – Decision support for site specific investigations. RIVM Report 711701047.

Kim K.H., Kabir E. & Jahan S.A., 2017. Exposure to pesticides and the associated human health effects. Science of The Total Environment, 575, 525–535.

Lewis K.A., Tzilivakis J., Warner D. & Green A., 2016. An international database for pesticide risk assessment and management. Human and Ecological Risk Assessment: An International Journal, 22, 4, 1050–1064.

Małachowska-Jutsz A., Baczyński T. & Stobiecki T., 2007a. Badania toksyczności gruntow z terenow składowisk nieprzydatnych środków ochrony roślin. [in:] Ekotoksykologia w ochronie środowiska glebowego i wodnego: pierwsza krajowa konferencja i warsztaty naukowe: materiały konferencyjne, 14–16 października 2007, IUNG- -PIB, Puławy, Instytut Uprawy, Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Puławy, 80–83.

Małachowska-Jutsz A., Kalka J., Chromy D. & Baczyński T., 2007b. Ocena toksyczności gruntu zanieczyszczonego odpadami popestycydowymi w rejonie mogilnika Sepno-Radonia. Inżynieria i Ochrona Środowiska, 10, 4, 293–307.

Małachowska-Jutsz A., Kalka J. & Baczyński T., 2008. Contamination of soil by pesticide wastes – a case study. Fresenius Environmental Bulletin, 17, 12b, 2200–2206.

Maliszewska-Kordybach B., Smreczak B. & Klimkowicz- Pawlas A., 2014. Evaluation of the Status of Contamination of Arable Soils in Poland with DDT and HCH Residues; National and Regional Scales. Polish Journal of Environmental Studies, 23, 1, 139–148.

MŚ, 2016. Odpowiedź na interpelację K8INT3186 w sprawie monitoringu terenow po zlikwidowanych mogilnikach. Ministerstwo Środowiska, Warszawa, [on-line:] www.sejm.gov.pl/Sejm8.nsf/InterpelacjaTresc.xsp?key= 77F95787 [access: 29.09.2017].

Natal‐da‐Luz T., Rombke J. & Sousa J.P., 2008. Avoidance tests in site‐specific risk assessment – influence of soil properties on the avoidance response of collembola and earthworms. Environmental Toxicology and Chemistry, 27, 5, 1112–1117.

NIK, 2012. Informacja o wynikach kontroli. Realizacja „Krajowego Planu Gospodarki Odpadami 2010” w zakresie likwidacji mogilników. Najwyższa Izba Kontroli. Delegatura w Białymstoku, Białystok, [on-line:] https://www. nik.gov.pl/plik/id,3758,vp,4852.pdf [access: 29.09.2017].

Odukkathil G. & Vasudevan N., 2013. Toxicity and bioremediation of pesticides in agricultural soil. Reviews in Environmental Science and Bio/Technology, 12, 4, 421–444.

Perez K.F.B., Charlatchka R., Sahli L. & Ferard J.F., 2012. New methodological improvements in the Microtox® solid phase assay. Chemosphere, 86, 1, 105–110.

Ringwood A.H., DeLorenzo M.E., Ross P.E. & Holland A.F., 1997. Interpretation of Microtox® solid‐phase toxicity tests: The effects of sediment composition. Environmental Toxicology and Chemistry, 16, 6, 1135–1140.

Rozporządzenie, 2016. Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Dz.U. 2016, poz. 1395.

Sekutowski T. & Sadowski J., 2009. Phytotoxkit TM microbiotest used in detecting herbicide residue in soil. Environment Protection Engineering, 35, 1, 105–110.

SIDoM, 2010. System Integracji Danych o Mogilnikach. Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej, Ministerstwo Środowiska, Warszawa, [on-line:] http:// mogilniki.pgi.gov.pl/mogilniki/ [access: 26.04.2018].

Siebielec G. et al., 2017. Raport z III etapu realizacji zamowienia „Monitoring Chemizmu Gleb Ornych w Polsce w Latach 2015–2017”. Instytut Uprawy, Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Puławy, [on-line:] http://www.gios.gov.pl/images/dokumenty/ pms/monitoring_jakosci_gleb/Raport_MChG_etap3. pdf [access: 29.09.2017].

Shi Y., Zhang Q., Huang D., Zheng X. & Shi Y., 2016. Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination. Pesticide Biochemistry and Physiology, 128, 22–29.

Ustawa, 2018. Ustawa z dnia 27 kwietnia 2001 r. Prawo ochrony środowiska. Dz.U. 2001, nr 62, poz. 627; consolidated text: Dz.U. 2018, poz. 799.

Downloads

Published

2018-06-19

How to Cite

Baczyński, T., Małachowska-Jutsz, A., & Szalińska, E. (2018). Toxicological assessment of pesticide contaminated soils with use of biotests. Geology, Geophysics and Environment, 44(2), 245. https://doi.org/10.7494/geol.2018.44.2.245

Issue

Section

Articles