Basic unit size in the analysis of the distribution of spatial landscape elements on the basis of the lithostratigraphic geodiversity of the Ojców National Park (Poland)

Tomasz Bartuś


Spatial analyses of landscape element diversity are always carried out on the basis of a previously established analytical grid. It divides the research area into 'n' smaller areas - basic units before calculating various landscape measures for each of them. The selection of an appropriate analytical grid, particularly its cell size, is a key issue for the results obtained and conclusions drawn from them. The article describes the procedure of empirical selection of a basic unit size in the medium-scale landscape and geodiversity analyses employing a regular analytical grid with square cells. The established methodology was based on observations of the distribution of the number of studied feature categories in the analytical grid fields. The correctness measures for the selection of the optimal basic unit size were the distributions themselves, as well as selected descriptive statistical parameters. The conducted analyses accurately illustrate the dependences between the variable size of the basic unit size and the number of the studied feature categories. The research conducted proves that the simple empirical approximation of the optimal basic unit size is possible.

The proposed procedure allowed the determination of the optimal basic unit size for the variation of the lithostratigraphic units of the Ojców National Park. The optimal unit size for the accuracy data typical for a reference scale 1:50 000 was specified as 500 m.


basic unit size estimation, landscape, geodiversity, lithostratigraphic geodiversity, Shannon diversity index, Ojców National Park

Full Text:



Abe T., Levin S.A. & Higashi M. (eds.), 1997. Biodiversity: an ecological perspective. Springer, New York.

Alexandrowicz S.W., Alexandrowicz Z. 2003. Pattern of karst landscape of the Cracow Upland (South Poland). Acta Carsologica, 32(1), 39-56.

Burnett M.R., August, P.V., Brown J.H., Jr., Killingbeck K.T., 1998. The influence of geomorphological heterogeneity on biodiversity I. A patch-scale perspective. Conservation Biology, 12, 363-370.

Buyantuyev A. & Wu J., 2007. Effects of thematic resolution on landscape pattern analysis. Landscape Ecology, 22, 7-13.

Corry R.C. & Lafortezza R., 2007. Sensitivity of landscape measurements to changing grain size for fine-scale design and management. Landscape and Ecological Engineering, 3, 47-53.

Dixon G., 1996. Geoconservation: An International Review and Strategy for Tasmania. Occasional Paper, 35, Parks & Wildlife Service, Tasmania.

Eberhard R. (ed.), 1997. Pattern & Process: Towards a Regional Approach to National Estate Assessment of Geodiversity. Australian Heritage Commission, Canberra.

Eiden G., Kayadjanian M. & Vidal C., 2000. Quantifying Landscape Structures: spatial and temporal dimensions, in From land cover to landscape diversity in the European Union. Report of the European Commission, [on-line:] /corine2000.pdf [access: 19.10.2016].

Forman R.T.T., 1997. Land mozaics, the ecology of landscapes and regions. Cambridge University Press, Cambridge - New York.

Forman R.T.T., & Godron M., 1986. Landscape Ecology. Wiley and Sons, New York.

Gaston K.J. (ed.), 1996. Biodiversity: a biology of numbers and difference. Blackwell Science, Oxford.

Gehlke C.E. & Biehl K., 1934. Certain effects of grouping upon the size of the correlation coefficient in census tract material. Journal of the American Statistical Association, 29, 169-170.

Gergel S.E., & Turner M.G. (eds.), 2002. Learning Landscape Ecology: A Practical Guide to Concepts and Techniques. Springer-Verlag, New York - Berlin - Heidelberg.

Gray M., 2004. Geodiversity - valuing and conserving abiotic nature. John Wiley & Sons, The Atrium, Southern Gate, Chichester.

Greig-Smith P., 1983. Quantitative plant ecology. University of California Press, Berkeley.

Hengl T., 2006. Finding the right pixel size. Computers & Geosciences, 32, 1283-1298.

Hjort J. & Luoto M., 2010. Geodiversity of high-latitude landscapes in northern Finland. Geomorphology, 115, 109-116.

Kot R., 2014. The point bonitation method for evaluating geodiversity: A guide with examples (Polish Lowland). Geografiska Annaler: Series A, Physical Geography, 97, 375-393, doi: 10.1111/geoa.12079.

Kot R. & Leśniak K., 2006. Ocena georóżnorodności za pomocą miar krajobrazowych - podstawowe trudności metodyczne. Przegląd Geograficzny, 78, 25-45.

Kozieł Z., 1993. Barwny kartogram złożony jako metoda badań i prezentacji wybranych zjawisk geograficznych. Uniwersytet Mikołaja Kopernika, Toruń.

Kozłowski S., 2004. Geodiversity. The concept and scope of geodiversity. Przegląd Geologiczny, 52, 2, 833-837.

Krummel J.R., Gardner R.H., Sugihara G., O’Neill R.V. & Coleman P.R., 1987. Landscape patterns in a disturbed environment. Oikos, 48, 321-324.

Legendre P. & Fortin M.J., 1989. Spatial pattern and ecological analysis. Vegetatio, 80, 107-138.

Leser H. & Nagel P., 1998. Landscape diversity - a holistic approach. [in:] Barthlott W. & Winiger M. (eds.), Biodiversity. a challenge for development research and policy, Springer-Verlag, Berlin, 129-143.

Matheron G., 1963. Principles of geostatistics. Economic Geology, 58, 1246-1266.

Meisel J.E. & Turner M.G., 1998. Scale detection in real and artificial landscapes using semivariance analysis. Landscape Ecology, 13, 347-362.

Miśkiewicz K., 2009. Geodiversity research problems in geotourism. Geoturystyka Geotourism, 16/17, 3-12.

McArthur R., Wilson E.O., 1968. The theory of island biogeography. Princeton.

McGarigal K. & Marks B.J., 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA Forest Service. Technical Reports, PNW- GTR-351, Portland.

McGarigal K., Cushman S.A. & Ene E., 2012. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. [on-line:] research/fragstats/fragstats.html [access: 19.10.2016].

Nichols F., Killingbeck K.T. & August P.V., 1998. The influence of geomorphological heterogeneity on biodiversity. Conservation Biology, 12(2), 371-379.

Openshaw S., 1984. The modifiable areal unit problem. CAT- MOG 38. GeoBooks, Norwich, England.

Orsi A., 2011. Quantifying the geodiversity of a study area in the Great Hungarian Plain. Journal of Environmental Geography, 4, 1-4, 19-22.

Pereira D.I., Pereira P., Brilha J. & Santos L., 2013. Geodiversity assessment of Parana State (Brazil): An innovative approach. Environmental Management, 52, 3, 541-552.

Plotnick R.E., Gardner R.H. & O’Neill R.V., 1993. Lacunarity indices as measures of landscape texture. Landscape Ecology, 8, 201-211.

Plotnick R.E., Gardner R.H., Hargrove W.W., Prestegaard K. & Perlmutter M., 1996. Lacunarity analysis: a general technique for the analysis of spatial patterns. Physical Review, 53, 1-8.

Płonczyński J., 2001. Mapa geologiczna Ojcowskiego Parku Narodowego wraz z otuliną. Badania naukowe w południowej części Wyżyny Krakowsko-Częstochowskiej. [in:] Partyka J. (red.), Badania naukowe w południowej części Wyżyny Krakowsko-Częstochowskiej: materiały konferencyjne, referaty, postery, sesje terenowe, Ojców 10-11 maja 2001 r., Ojcowski Park Narodowy, Ojców, 73-76.

Prosser C.D., 2002. Terms of endearment. Earth Heritage, 17, 13-14.

Quinta-Nova L.C. & Cabaceira S., 2014. The importance of land use metrics in the design of landscape units. The study case of Centro region of Portugal. [in:] IALE-Europe Thematic Workshop 2014, Advances in Spatial Typologies: How to move from concepts to practice? 4-5 July 2014, Instituto Superior Tecnico, Lisbon, [on-line] http:// Workshop_IALE.pdf].

Radeloff V.C., Miller T.F., He H.S. & Mladenoff D.J., 2000. Periodicity in spatial data and geostatistical models: autocorrelation between patches. Ecography, 23, 81-91.

Rossi R.E., Mulla D.J., Journel A.G. & Franz E.H., 1992. Geostatistical tools for modeling and interpreting ecological dependence. Ecological Monographs, 62, 277-314.

Serrano E. & Ruiz-Flano P., 2007a. Geodiversidad: concepto, evaluación y aplicación territorial. El caso de Tiermes Caracena (Soria). Boletin de la Asociación de Geógrafos Espanoles, 45, 79-98.

Serrano E. & Ruiz-Flano P., 2007b. Geodiversity: a theoretical and applied concept. Geographica Helvetica, 62(3), 140-147.

Shannon C.E. & Weaver W., 1949. The mathematical theory of communication. University of Illinois Press, Urbana.

Sharples Ch., 1993. A Methodology for the Identification of Significant Landforms and Geological Sites for Geoconservation Purposes. Forestry Commission, Tasmania.

Silva J.P., Pereira D.I., Aguiar A.M. & Rodrigues C., 2013. Geodiversity assessment of the Xingu drainage basin. Journal of Maps, 9, 2, 254-262.

Stanley M., 2001. Welcome to the 21st century. Geodiversity Update, 1, 1.

Stanley M., 2003. Geodiversity: our foundation. Geology Today, 19, 104-107.

Suchożebrski J., 2004. The size of the basic unit in geographical analysis. Miscallanea Geographica, 11, 151-160.

Simova P. & Gdulova K., 2011. Changes in landscape heterogenity described by Shannon diversity index - Czech Republic. Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Ceska zemedelska univerzita v Praze, Praha.

Turner M.G., O’Neill R.V., Gardner R.H. & Milne B.T., 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, 3, 3-4, 153-162.

Wu J., 2004. Effects ofchanging scale on landscape pattern analysis: scaling relations. Landscape Ecology, 19, 2, 125-138.

Zonneveld I.S., 1995. Land ecology: an introduction to landscape ecology as a base for land evaluation, land management and conservation. SPB Academic Publishing, Amsterdam.



  • There are currently no refbacks.