Titanium compounds and their impact on the transformation of air pollutants

Authors

  • Agnieszka Bok Opole University of Technology
  • Marta Bożym Opole University of Technology

DOI:

https://doi.org/10.7494/geol.2015.41.3.213

Keywords:

titanium, TiO2, photocatalysis, wear, pollutant, catalyst

Abstract

Titanium as transition metal is demonstrating the high mechanical strength, is light and corrosion resistant. The estimation of environmental impact of use of machine parts thats grains are freed from contact surface of titanium alloys by wear is buffling. Due to its catalytic action TiO2 is nowadays added to: asphalt, concrete, exterior paints for elevation, self-cleaning glass and protective coatings. It is also present by clothes, food (E171), cosmetics (CI 77891) and textiles. The research on toxicity of titanium and its compounds is pointing at their neutral character, however an adverse impact is also being observed by nature. TiO2 may affect air quality – it promotes free radicals and ozone origination. Properties and directions of titanium compounds use and their influence on pollutants circulation were described.

Downloads

Download data is not yet available.

Author Biographies

Agnieszka Bok, Opole University of Technology


Department of Manufacturing Engineering and Production Automation, MSc

 

Marta Bożym, Opole University of Technology


Department of Environmental Engineering,

PhD

References

Adams M., Campbell I. & Robertson P.K.J., 2008. Novel photocatalytic reactor development for removal of hydrocarbons from water. International Journal of Photoenergy, ID 674537, 1–7.

Anpo M., 2000. Utilization of TiO 2 photocatalysts in green chemistry. Pure and Applied Chemistry, 72, 1787–1792.

Ao C.H., Lee S.C., Mak C.L. & Chan L.Y., 2003. Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO 2 : promotion versus inhibition effect of NO. Applied Catalysis B-Environmental, 42, 2, 119–129.

Asahi R., Morikawa T., Ohwaki T., Aoki K. & Taga Y. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293, 269–271.

Bekbölet M., 1997. Photocatalytic bactericidal activity of TiO 2 in aqueous suspensions of E. coli. Water Science and Technology, 35, 11–12, 95–100.

Cheng Q., Li C., Pavlinek V., Saha P. & Wang H., 2006. Surface-modified antibacterial TiO 2 /Ag + nanoparticles: Preparation and properties. Applied Surface Science, 252, 4154–4160.

Dalton J.S., Janes P.A., Jones N.G., Nicholson J.A., Hallam K.R. & Allen G.C., 2002. Photocatalytic oxidation of NOx gases using TiO 2 : a surface spectroscopic approach. Environmental Pollution, 120, 2, 415–422.

Devahasdin S., Fan C., Li K.Y. & Chen D.H., 2003. TiO 2 photocatalytic oxidation of nitric oxide: transient behaviour and reaction kinetics. Journal of Photochemistry and Photobiology A: Chemistry, 156, 161–170.

Frazer L., 2001. Titanium dioxide: Environmental white knight? Environmental Health Perspectives, 109, 4, A174–A177.

Gao P., Liu J., Zhang T., Sun D.D. & Ng W., 2012. Hierarchical TiO 2 /CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation. Journal of Hazardous Materials, 229–230, 209–216.

Gelover S., Gómez L.A., Reyes K. & Leal M.T., 2006. A practical demonstration of water disinfection using TiO 2 films and sunlight. Water Research, 40, 3274–3280.

Giergiczny Z. & Sokołowski M., 2009. Fotokatalityczne właściwości betonu zawierającego cement Tiocem®. [in:] Tic J.W. (red.), Nowe inicjatywy organizacyjne i technologiczne w zakresie chemii przemysłowej, Akademicki Inkubator Przedsiębiorczości Politechnika Opolska, Opole, 123, 73–82.

Górska P., 2009. Preparatyka i badania katalizatorów tytanowych aktywnych w świetle widzialnym. Politechnika Gdańska, Gdańsk [doctoral thesis].

Hager S. & Bauer R., 1999. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide. Chemosphere, 38, 7, 1549–1559.

Herrmann J.M., 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53, 115–129.

Hoffmann M.R., Martin S.T., Choi W. & Bahnemann D.W., 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

Höhr D., Steinfartz Y., Schins R.P.F., Knaapen A.M., Matra G., Fubini B. & Bonn P.J.A., 2002. The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO 2 in the rat. International Journal of Hygiene and Environmental Health, 205, 239–244.

Ihara T., Miyoshi M., Iriyama Y., Matsumoto O. & Sugihara S., 2003. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B: Environmental, 42, 403–409.

Kabata-Pendias A. & Pendias H., 1999. Biogeochemia pierwiastków śladowych. Wyd. Nauk. PWN, Warszawa.

Koller G., Cook R.J., Thompson I.D., Watson T.F. & Di Silvio L., 2007. Surface modification of titanium implants using bioactive glasses with air abrasion technologies. Journal of Materials Science: Materials in Medicine, 18, 2291–2296.

Kuzel S., Hruby M., Cígler P., Tlustos P. & Van P.N., 2003. Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biological Trace Element Research, 91, 179–189.

Langridge J.M., Gustafsson R.J., Griffiths P.T., Cox R.A., Lambert R.M. & Jones R.L., 2009. Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: A concern for air quality in urban areas? Atmospheric Environment, 43, 5128–5131.

Liu L., Yang J., Liu S., Bai L., Liua B., Wang Q., Xua G., Jinga P., Yu S. & Zhang J., 2014a. Hollow hybrid titanate/Au@TiO 2 hierarchical architecture for highly efficient photocatalytic application. Catalysis Communications, 54, 66–71.

Liu Y., Xu H., Zhu S., Zhou M. & Miao J., 2014b. Enhanced Degradation of Acid Orange 7 Solution by Non-thermal Plasma Discharge with TiO 2 . Plasma Chemistry and Plasma Processing, 34, 1403–1413.

Maggos T., Bartzis J.G., Leva P. & Kotzias D., 2007. Application of photocatalytic technology for NOx removal. Applied Physics A: Materials Science & Processing, 89, 1, 81–84.

Maggos T., Plassais A., Bartzis J.G., Vasilakos C., Moussiopoulos N. & Bonafous L., 2008. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO 2 mortar panels. Environmental Monitoring and Assessment, 136, 1–3, 35–44.

MAK Value Documentation, 2012. Allgemeiner Staubgrenzwert (A-Fraktion) (Granuläre biobeständige Stäube (GBS)). The MAK-Collection for Occupational Health and Safety, 1–78.

McCullagh K., Skillen N., Adams M. & Robertson P.K.J., 2011. Photocatalytic reactors for environmental remediation: a review. Journal of Chemical Technology and Biotechnology, 86, 1002–1017.

Moiseev V.N., Zakharov Yu.I. & Znamenskaya E.V., 1982. Trends in the development of high-strength titanium alloys. [in:] Williams J.C. & Belov A.F. (eds), Titanium and Its Alloys. Scientific and Technological Aspects. Volume 3, Springer US, 2101–2110.

O’Keeffe C., Gannon P., Gilson P., Kafizas A., Parkin I.P. & Binions R., 2013. Air purification by heterogeneous photocatalytic oxidation with multi-doped thin film titanium dioxide. Thin Solid Films, 537, 131–136.

Park S.M., Chekli L., Kim J.B., Shahid M., Shon H.K., Kim P.S., Lee W.S., Lee W.E., Kim J.H., 2014. NOx removal of mortar mixed with titania produced from Ti-salt flocculated sludge. Journal of Industrial and Engineering Chemistry, 20, 3851–3856.

Petrova A.M., 2002. Structural wear-resistant sintered materials based on titanium. Powder Metallurgy and Metal Ceramics, 41, 7–8.

Ramirez A.M., Demeestere K., De Belie N., Mantyla T., Levanen E., 2010. Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential. Building and Environment, 45, 832–838.

Reddy G. Madhusudhan, Rao A. Sambasiva & Rao K. Srinivasa, 2013. Friction Stir Surfacing Route: Effective Strategy for the Enhancement of Wear Resistance of Titanium Alloy. Transactions of the Indian Institute of Metals, 66, 3, 231–238.

Rizzo L., 2009. Inactivation and injury of total coli form bacteria after primary disinfection of drinking water by TiO 2 photocatalysis. Journal of Hazardous Materials, 165, 48–51.

Robertson P.K.J., Campbell I. & Russell D., 2004. International Patent Publication. Photocatalytic Reactor – Apparatus and Method for Treating Fluid by Means of a Treatment Container. Number WO 2005/033016.

Skorb E.V., Antonouskaya L.I., Belyasova N.A., Shchukin D.G., Mohwald H. & Sviridov D.V., 2008. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO 2 and TiO 2 :In 2 O 3 nanocomposite. Applied Catalysis B: Environmental, 84, 94–99.

Sosnowy P., Swadźb L., Jurczak M., Witala B. & Supernak W., 2013. Wybrane właściwości powłok TBC wytwarzanych metodą Triplex Pro 200 z otworami wycinanymi laserem. Hutnictwo, Górnictwo, Inżynieria Materiałowa, 34, 5, 542–546.

Souzaa J.S., Krambrock K., Pinheirob M.V.B., Andoc R.A., Guhad S. & Alvesa W.A., 2014. Visible-light photocatalytic activity of NH 4 NO 3 ion-exchanged nitrogen-doped titanate and TiO 2 nanotubes. Journal of Molecular Catalysis A: Chemical, 394, 48–56.

Strini A., Cassese S. & Schiavi L., 2005. Measurement of benzene, toluene, ethylbenzene and oxylene gas photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental, 61, 90–107.

Strini A., Sanson A., Mercadelli E., Sangiorgi A. & Schiavi L., 2013. Low irradiance photocatalytic degradation of toluene in air by screen-printed titanium dioxide layers. Thin Solid Films, 545, 537–542.

Szuliński S. & Strusiński A., 2001. Plastyczność pamięciowa mózgu białych szczurównarażonych długookresowo na tytan w wodzie do picia. Roczniki Państwowego Zakładu Higieny, 52, 1, 35–39.

Twohy C.H. & Gandrud B.W., 1998. Electron microscope analysis of residual particles from aircraft contrails. Geophysical Research Letters, 25, 9, 1359–1362.

Von Goetz N., Lorenz C., Windler L., Nowack B., Heuberger M. & Hungerbuehler K., 2013. Migration of Ag − and TiO 2− (nano)particles from Textiles into Artificial Sweat under Physical Stress: Experiments and Exposure Modeling. Environmental Science & Technology, 47, 9979−9987.

Wakefield G. & Stott J., 2006. Photostabilization of organic UV-absorbing and anti-oxidant cosmetic components in formulations containing micronized manganesedoped titanium oxide. Journal of Cosmetic Science, 57, 385–395.

Wang K.H., Hsieh I.H., Ko R.C. & Chang C.Y., 1999. Photocatalytic degradation of wastewater from manufactured fiber by titanium dioxide suspensions in aqueous solution. Environment International, 25, 5, 671–676.

Wang H., Wu Z., Zhao W. & Guan B., 2007. Photocatalytic oxidation of nitrogen oxides using TiO 2 loading on woven glass fabric. Chemosphere, 66, 185–190.

World Health Organization, International Agency for Research on Cancer, 2010. Titanium dioxide. [in:] IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 93: Carbon Black, Titanium Dioxide, and Talc, WHO International Agency for Research on Cancer, Lyon, 193–276.

Yaghoubi S., Schwietert Ch.W. & McCue J.P., 2000. Biological roles of titanium. Biological Trace Element Research, 78, 205–217.

Downloads

Published

2016-01-21

How to Cite

Bok, A., & Bożym, M. (2016). Titanium compounds and their impact on the transformation of air pollutants. Geology, Geophysics and Environment, 41(3), 213. https://doi.org/10.7494/geol.2015.41.3.213

Issue

Section

Articles