EXTENDING THE SHEBA PROPAGATION MODEL TO REDUCE PARAMETER-RELATED UNCERTAINTIES

Authors

  • Gabriele Pierantoni
  • Brian Coghlan
  • Eamonn Kenny
  • Peter Gallagher
  • David Perez-Suarez

DOI:

https://doi.org/10.7494/csci.2013.14.2.253

Abstract

Heliophysics is the branch of physics that investigates the interactions and cor-relation of different events across the Solar System. The mathematical modelsthat describe and predict how physical events move across the solar system (ie.Propagation Models) are of great relevance. These models depend on parame-ters that users must set, hence the ability to correctly set the values is key toreliable simulations. Traditionally, parameter values can be inferred from dataeither at the source (the Sun) or arrival point (the target) or can be extrapo-lated from common knowledge of the event under investigation. Another way ofsetting parameters for Propagation Models is proposed here: instead of guess-ing a priori parameters from scientific data or common knowledge, the model isexecuted as a parameter-sweep job and selects a posteriori the parameters thatyield results most compatible with the event data. In either case (a priori anda posteriori), the correct use of Propagation Models requires information toeither select the parameters, validate the results, or both. In order to do so, itis necessary to access sources of information. For this task, the HELIO projectproves very effective as it offers the most comprehensive integrated informationsystem in this domain and provides access and coordination to services to mineand analyze data. HELIO also provides a Propagation Model called SHEBA,the extension of which is currently being developed within the SCI-BUS project(a coordinated effort for the development of a framework capable of offering toscience gateways seamless access to major computing and data infrastructures).

Downloads

References

glite web page – http://glite.cern.ch/.

Grid ireland web page – https://grid.ie/.

Hek project page – http://www.lmsal.com/hek/api.html.

Helio project page – http://www.helio-vo.eu/.

Idl project page – http://www.exelisvis.com/language/en-us/productsservices/idl.aspx.

Sci-bus project page - https://www.sci-bus.eu/web/guest.

Bentley R. D.: Building a virtual observatory for heliophysics. Earth, Moon, and Planets, 104:87–91, 2009.

Bentley R. D., Csillaghy A., Aboudarham J., Jacquey C., Hapgood M. A., Bocchialini K., Messerotti M., Brooke J., Gallagher P., Fox P., Hurlburt N., Roberts D. A., Duarte L. S.: Helio: The heliophysics integrated observatory. Advances in

Space Research, 2009.

Franois O., Roy W., Clive D., Daniel D., Pierre F., Robert H., David G., Tom M., Alex S., Andreas W.: Votable: Tabular data for the virtual observatory. In Toward an International Virtual Observatory, Springer-Verlag, p. 118, 2004.

Kacsuk P., Farkas Z., Kozlovszky M., Hermann G., Balasko A., Karoczkai K., Marton I.: WS-PGRADE/gUSE Generic DCI Gateway Framework for a Large Variety of User Communities. Journal of Grid Computing, pp. 1–30, November 2012.

Oinn T., Greenwood M., Addis M., Alpdemir M. N., Ferris J., Glover K., Goble C., Goderis A., Hull D., Marvin D., Li P., Lord P., Pocock M. R., Senger M., Stevens R., Wipat A., Wroe C.: Taverna: lessons in creating a workflow environment for the life sciences. Concurrency and Computation: Practice and

Experience, 18(10):1067–1100, 2006.

Parker E. E. N.: Dynamics of the Interplanetary Gas and Magnetic Fields. The Astrophysical Journal, 128:664, November 1958.

P´erez-Su´arez D., Maloney S. a., Higgins P. a., Bloomfield D. S., Gallagher P. T., Pierantoni G., Bonnin X., Cecconi B., Alberti V., Bocchialini K., Dierckxsens M., Opitz A., Blanc A., Aboudarham J., Bentley R. B., Brooke J., Coghlan B.,

Csillaghy A., Jacquey C., Lavraud B., Messerotti M.: Studying SunPlanet Connections Using the Heliophysics Integrated Observatory (HELIO). Solar Physics, 280(2):603–621, September 2012.

Pierantoni G., Coghlan B., Kenny E.: The architecture of helio. In Krakow Grid Workshop 2010, 2010.

Xie H., Ofman L., Lawrence G.: Cone model for halo CMEs: Application to space weather forecasting. Journal of Geophysical Research (Space Physics), 109:3109,

March 2004.

Downloads

Published

2013-06-17

Issue

Section

Articles

How to Cite

Pierantoni, G., Coghlan, B., Kenny, E., Gallagher, P., & Perez-Suarez, D. (2013). EXTENDING THE SHEBA PROPAGATION MODEL TO REDUCE PARAMETER-RELATED UNCERTAINTIES. Computer Science, 14(2), 253. https://doi.org/10.7494/csci.2013.14.2.253

Most read articles by the same author(s)