A WORKFLOW-ORIENTED APPROACH TO PROPAGATION MODELS IN HELIOPHYSICS

Gabriele Pierantoni, Eoin Carley, Jason Byrne, David Perez-Suarez, Peter T. Gallagher

Abstract


The Sun is responsible for the eruption of billions of tons of plasma andthe generation of near light-speed particles that propagate throughout the solarsystem and beyond. If directed towards Earth, these events can be damaging toour tecnological infrastructure. Hence there is an effort to understand the causeof the eruptive events and how they propagate from Sun to Earth. However, thephysics governing their propagation is not well understood, so there is a need todevelop a theoretical description of their propagation, known as a PropagationModel, in order to predict when they may impact Earth. It is often difficultto define a single propagation model that correctly describes the physics ofsolar eruptive events, and even more difficult to implement models capable ofcatering for all these complexities and to validate them using real observational data.

In this paper, we envisage that workflows offer both a theoretical andpractical framerwork for a novel approach to propagation models. We definea mathematical framework that aims at encompassing the different modalitieswith which workflows can be used, and provide a set of generic building blockswritten in the TAVERNA workflow language that users can use to build theirown propagation models. Finally we test both the theoretical model and thecomposite building blocks of the workflow with a real Science Use Case that wasdiscussed during the 4th CDAW (Coordinated Data Analysis Workshop) eventheld by the HELIO project. We show that generic workflow building blocks canbe used to construct a propagation model that succesfully describes the transitof solar eruptive events toward Earth and predict a correct Earth-impact time


Keywords


Heliophysics, workflows, TAVERNA, Coronal Mass Ejection, Propagation Models

Full Text:

PDF

References


ER-FLOW Project Page – http://www.http://www.erflow.eu/.

Grid Ireland Web Page – https://grid.ie/.

HELIO Project Page – http://www.helio-vo.eu/.

SCI-BUS Project Page – https://www.sci-bus.eu/web/guest.

Bentley R., Brooke J., Csillaghy A., Fellows D., Blanc A. L., Messerotti M., Pérez-Suárez D., Pierantoni G., Soldati M.: HELIO: Discovery and analysis of data in heliophysics. Future Generation Computer Systems, vol. 29(8), pp. 2157–2168, 2013. ISSN 0167-739X. http://dx.doi.org//10.1016/j.future.2013.04.006.

Blanc A., Brooke J., Fellows D., Soldati M., Prez-Surez D., Marassi A., Santin A.: Workflows for Heliophysics. Journal of Grid Computing, vol. 11(3), pp. 481–503, 2013. ISSN 1570-7873. http://dx.doi.org/10.1007/s10723-013-9256-5.

Bougeret J. L., Kaiser M. L., Kellogg P. J., Manning R., Goetz K., Monson S. J., Monge N., Friel L., Meetre C. A., Perche C., Sitruk L., Hoang S.: Waves: The Radio and Plasma Wave Investigation on the Wind Spacecraft. Space Science Reviews, vol. 71, pp. 231–263, 1995. http://dx.doi.org/10.1007/BF00751331.

Brueckner G. E., Howard R. A., Koomen M. J., Korendyke C. M., Michels D. J., Moses J. D., Socker D. G., Dere K.P., Lamy P. L., Llebaria A., Bout M. V., Schwenn R., Simnett G. M., Bedford D.K., Eyles C. J.: The Large Angle Spectroscopic Coronagraph (LASCO). Solar Physics, vol. 162, pp. 357–402, 1995. http://dx.doi.org/10.1007/BF00733434.

Cremades H., St. Cyr O. C., Kaiser M. L.: A tool to improve space weather forecasts: Kilometric radio emissions from Wind/WAVES. Space Weather, vol. 5, S08001, 2007. http://dx.doi.org/10.1029/2007SW000314.

Deelman E., Gannon D., Shields M., Taylor I.: Workflows and e-Science: An Overview of Workflow System Features and Capabilities. Future Gener. Comput. Syst., vol. 25(5), pp. 528–540, 2009. ISSN 0167-739X. http://dx.doi.org/10.1016/j.future.2008.06.012.

Domingo V., Fleck B., Poland A. I.: The SOHO Mission: an Overview. Solar Physics, vol. 162, pp. 1–37, 1995. http://dx.doi.org/10.1007/BF00733425.

Gil Y., Deelman E., Ellisman M., Fahringer T., Fox G., Gannon D., Goble C., Livny M., Moreau L., Myers J.: Examining the Challenges of ScientificWorkflows. Computer, vol. 40(12), pp. 24–32, 2007. ISSN 0018-9162. http://dx.doi.org/10.1109/MC.2007.421.

Gressl C., Veronig A. M., Temmer M., Odstrčil D., Linker J.A., Mikić Z., Riley P.: Comparative Study of MHD Modeling of the Background Solar Wind. Solar Physics, 2013. http://dx.doi.org/10.1007/s11207-013-0421-6.

Hovestadt D., Hilchenbach M., Bürgi A., Klecker B., Laeverenz P., Scholer M., Grünwaldt H., Axford W. I., Livi S., Marsch E., Wilken B., Winterhoff H.P., Ipavich F. M., Bedini P., Coplan M. A., Galvin A.B., Gloeckler G., Bochsler P., Balsiger H., Fischer J., Geiss J., Kallenbach R., Wurz P., Reiche K. U., Gliem F., Judge D. L., Ogawa H. S., Hsieh K. C., Möbius E., Lee M. A., Managadze G. G., Verigin M. I., Neugebauer M.: CELIAS – Charge, Element and Isotope Analysis System for SOHO. Solar Physics, vol. 162, pp. 441–481, 1995. http://dx.doi.org/10.1007/BF00733436.

Hull D., Wolstencroft K., Stevens R., Goble C., Pocock M. R., Li P., Oinn T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research, vol. 34(suppl 2), pp. W729–W732, 2006. http://dx.doi.org/10.1093/nar/gkl320.

Lemen J. R., Title A. M., Akin D. J., Boerner P. F., Chou C., Drake J. F., Duncan D. W., Edwards C. G., Friedlaender F. M., Heyman G. F., Hurlburt N. E., Katz N. L., Kushner G. D., Levay M., Lindgren R. W., Mathur D.P., McFeaters E. L., Mitchell S., Rehse R. A., Schrijver C. J., Springer L. A., Stern R. A., Tarbell T. D., Wuelser J.P., Wolfson C. J., Yanari C., Bookbinder J. A., Cheimets P. N., Caldwell D., Deluca E. E., Gates R., Golub L., Park S., Podgorski W. A., Bush R. I., Scherrer P. H., Gummin M. A., Smith P., Auker G., Jerram P., Pool P., Soufli R., Windt D. L., Beardsley S., Clapp M., Lang J., Waltham N.: The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, vol. 275, pp. 17–40, 2012. http: //dx.doi.org/10.1007/s11207-011-9776-8.

Maloney S. A., Gallagher P. T., McAteer R. T. J.: Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere. Solar Physics, vol. 256, pp. 149–166, 2009. http://dx.doi.org/10.1007/s11207-009-9364-3.

McKenna-Lawlor S. M. P., Dryer M., Kartalev M. D., Smith Z., Fry C. D., Sun W., Deehr C. S., Kecskemety K., Kudela K.: Near real-time predictions of the arrival at Earth of flare-related shocks during Solar Cycle 23. Journal of Geophysical Research (Space Physics), vol. 111, A11103, 2006. http://dx.doi.org/10.1029/2005JA011162.

Nelson G. J., Melrose D.B.: Type II bursts, pp. 333–359. 1985.

Oinn T., Addis M., Ferris J., Marvin D., Senger M., Greenwood M., Carver T., Glover K., Pocock M. R., Wipat A., Li P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics, vol. 20(17), pp. 3045–3054, 2004. http://dx.doi.org/10.1093/bioinformatics/bth361.

Pierantoni G., Coghlan B., Kenny E.: The Architecture of HELIO. In: Krakow Grid Workshop. 2010.

Pierantoni G., Coghlan B., Kenny E., Gallagher P., Perez-Suarez D.: Extending the SHEBA Propagation Model to reduce Parameter-Related Uncertainties. Computer Science, vol. 14(2), pp. 253–272, 2012.

Pulupa M., Bale S. D.: Structure on Interplanetary Shock Fronts: Type II Radio Burst Source Regions. Astrohpysicsl Journal, vol. 676, pp. 1330–1337, 2008. http://dx.doi.org/10.1086/526405.

Pulupa M.P., Bale S. D., Kasper J. C.: Langmuir waves upstream of interplanetary shocks: Dependence on shock and plasma parameters. Journal of Geophysical Research (Space Physics), vol. 115, A04106, 2010. http://dx.doi.org/10.1029/2009JA014680.

Roure D.D., Goble C., Stevens R.: The Design and Realisation of the myExperiment Virtual Research Environment for Social Sharing of Workflows. Future Generation Computer Systems, vol. 25, pp. 561–567, 2009.

Stone E. C., Frandsen A. M., Mewaldt R. A., Christian E. R., Margolies D., Ormes J. F., Snow F.: The Advanced Composition Explorer. Space Science Reviews, vol. 86, pp. 1–22, 1998. http://dx.doi.org/10.1023/A:1005082526237.

Uchida Y.: On the Exciters of Type II and Type III Solar Radio Bursts. Publications of the Astronimical Society of Japan, vol. 12, p. 376, 1960.

Webb D. F., Howard T. A.: Coronal Mass Ejections: Observations. Living Reviews in Solar Physics, vol. 9, p. 3, 2012. http://dx.doi.org/10.12942/lrsp-2012-3.

Yurchyshyn V., Yashiro S., Abramenko V., Wang H., Gopalswamy N.: Statistical Distributions of Speeds of Coronal Mass Ejections. Astrophysical Journal, vol. 619, pp. 599–603, 2005. http://dx.doi.org/10.1086/426129.




DOI: https://doi.org/10.7494/csci.2014.15.3.271

Refbacks

  • There are currently no refbacks.