INFLUENCE OF CORROSION ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF 3XXX, 5XXX, AND 6XXX SERIES ALUMINUM ALLOYS
DOI:
https://doi.org/10.7494/mafe.2017.43.4.291Keywords:
corrosion resistance, aluminum alloys, pitting corrosion, intergranular corrosionAbstract
Growing demands imposed on passenger car producers concerning the reduction of exhaust emission to the environment are forcing a search for new materials and design solutions. One of the most-important factors that can reduce this emission is the low mass of a vehicle, leading to a decrease in its average fuel consumption. A reduction in weight can be obtained by the use of aluminum elements instead of steel; e.g., in air conditioning pipes, decreasing the specific weight of the construction by nearly three times. In the present study, the influence of the SWAAT corrosion test on A/C piping made from 3xxx, 5xxx, and 6xxx series aluminum alloys was investigated. The study focused on changes in the mechanical properties of samples before and after a SWAAT test determined by a tensile test and Vickers hardness measurements. Additionally, microstructure examinations were performed with the use of optical and scanning microscopy. Corrosion products on the surface of pipes were identified by Energy Dispersive X-ray Spectroscopy. Pipes made from the EN AW 6063 alloy revealed an almost 50% decrease in its strength properties after the tests. The largest decline in plastic properties was observed in pipes made from the EN AW 6060 alloy.Downloads
References
Ghali E.: Corrosion Resistance of Aluminum and Magnesium Alloys. Wiley, 2010
Polmear I.: Light Alloys from Traditional Alloys to Nanocrystals. Elsevier, Sydney 2006
Lifka B.W.: Corrosion Engineering Handbook, vol. 1. Marcel Dekker, New York 1996
Szklarska-Smialowska Z.: Pitting corrosion of aluminum. Corrosion Science, 41, 9 (1998), 1743–1767
Kwiatkowski L.: Podatność na korozję i skuteczność przed korozją stopów aluminium stosowanych w budownictwie. Inżynieria Powierzchni, 4 (2009), 24–32
Oesch S., Faller M.: Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures. Corrosion Science, 39, 9 (1997), 1505–1530
Vargel C.: Corrosion de l’aluminium. Dunod, Paris 1999
Roodbari M.K.: Effect of Microstructure on the Performance of Corrosion Resistant Alloys. Master thesis, Norwegian University of Science and Technology, Trondheim 2015
Davis J.R. (ed.): Corrosion of Aluminium and Aluminium Alloys. ASM International 1999
Sukiman N.L., Zhou X., Birbilis N., Hughes A.E., Mol J.M.C., Garcia S.J., Thompson G.E.: Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments. In: Ahmad Z. (ed.), Aluminium Alloys – New Trends in Fabrication and Applications. InTech 2012, 47–97
Revie R.W. (ed.): Uhlig’s Corrosion Handbook. Third edition. John Wiley and Sons, Hoboken, NJ, USA, 2011
Lucente A.M., Scully J.R.: Pitting and alkaline dissolution of an amorphous-nanocrystalline alloy with solute-lean nanocrystals. Corrosion Science, 49, 5 (2007), 2351–2361
Lunt T.T., Scully J.R., Brusamarello V., Mikhailov A.S., Hudson J.L.: Spatial Interactions among Localized Corrosion Sites: Experiments and Modeling. In: Electrochemical Society Proceedings, vol. 2000–25, 115–125
Wang B., Zhang L., Su Y., Xiao Y., Liu J.: Corrosion Behavior of 5A05 Aluminium Alloy in NaCl Solution. Acta Metallurgica Sinica (English Letters), 26, 5 (2013), 581–587
Birbilis N., Buchheit R.G.: Electrochemical Characteristics of Intermetallic Phases in Aluminium Alloys an Experimental Survey and Discussion. Journal of the Electrochemical Society, 152 (2005), 140–151
Macdonald D.D.: The history of the point defect model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 56, 4 (2011), 1761–1772
Lucente A.M., Scully J.R.: Pitting and alkaline dissolution of an amorphous-nanocrystalline alloy with solute-lean nanocrystals. Corrosion Science, 49, 5 (2007), 2351–2361
Lunt T.T., Scully J.R., Brusamarello V., Mikhailov A.S., Hudson J.L.: Spatial Interactions among Localized Corrosion Sites. Journal of the Electrochemical Society, 149, 5 (2002), B163–B173
Triantafyllidis G.K., Kiligaridis I., Zagkliveris D.I., Orfanou I., Spyridopoulou S., Mitoudi-Vagourdi E., Semertzidou S.: Characterization of the A6060 Al Alloy Mainly by Using the Micro-Hardness Vickers Test in
Order to Optimize the Industrial Solutionizing Conditions of the As-Cast Billets. Materials Sciences and Applications, 6 (2015), 86–94
Mrówka-Nowotnik G., Sieniawski J.: Wpływ warunków umacniania wydzieleniowego na mikrostrukturę i właściwości mechaniczne stopu aluminium AlSi1MgMn. Inżynieria Materiałowa, 3 (2006), 217–220
Hirsch J.: Aluminium in Innovative Light-Weight Car Design. Materials Transactions, 52, 5 (2011), 818–824
Ghassemieh E.: Materials in Automotive Application, State of the Art and Prospects. In: Chiaberge M. (ed.), New Trends and Developments Automotive Industry. InTech 2011, 365–394
The aluminium automotive manual. https://www.european-aluminium.eu/media/1540/aam-products-3-automotive-tubes.pdf [20.11.2017]
Leszczyńska-Madej B., Sajdak W., Wiewióra M., Richert M.: Stabilność termiczna stopów aluminium stosowanych w urządzeniach klimatyzacyjnych. Rudy i Metale Nieżelazne, 61, 12 (2016), 521–525
Wzorek Ł., Wędrychowicz M., Skrzekut T., Noga P.: Effect of heat treatment on quality and properties of solid bonded 6061 aluminium alloy. Inżynieria Materiałowa. Materials Engineering, 38 (2017), 32–38