REAL-TIME IMPLEMENTATION OF MOVING OBJECT DETECTION IN VIDEO SURVEILLANCE SYSTEMS USING FPGA
DOI:
https://doi.org/10.7494/csci.2011.12.0.149Keywords:
background generation, background subtraction, image processing, hardware acceleration, FPGAAbstract
The article presents the concept of real-time implementation computing tasks in videosurveillance systems. A pipeline implementation of a multimodal background generationalgorithm for colour video stream and a moving objects segmentation based on brightness,colour and textural information in reconfigurable resources of FPGA device is described.System architecture, resource usage and segmentation results are presented.Downloads
References
Abutaleb M. M., Hamdy A., Abuelwafa M. E., Saad E. M.: FPGA-based objectextraction based on multimodal sigma – delta background estimation. [in:] 2nd International Conference on Computer, Control and Communication, 2009. IC4 2009., Feb. 2009, pp. 1-7.
Appiah K., Hunter A.: A single-chip FPGA implementation of real-time adaptive background model. [in:] IEEE International Conference on Field-Programmable Technology, 2005. Proceedings., Dec. 2005, pp. 95-102.
Benedek C., Szir´anyi T.: Study on color space selection for detecting cast shadows in video surveillance. Int. J. Imaging Syst. Technol., 17, Oct. 2007, pp. 190-201.
Butler D., Sridharan S., Bove V. M. Jr.: Real-time adaptive background segmentation. [in:] IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., volume 3, vol. 3, Apr. 2003, pages III – 349–52.
Elgammal A., Harwood D., Davis L.: Non-parametric model for background subtraction. [in:] FRAME-RATE WORKSHOP, IEEE, 2000, pp. 751-767.
Elhabian S. Y., El-Sayed K. M., Ahmed S. H.: Moving Object Detection in Spatial Domain using Background Removal Techniques – State-of-Art. Recent Patents on Computer Science, 1, 2008, pp. 32-34.
Gorgon M., Pawlik P., Jablonski M., Przybylo J.: FPGA-based road traffic videodetector. [in:] Proc. of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, Washington, DC, USA, 2007. IEEE Computer Society, pp. 412-419.
Haritaoglu I., Harwood D., Davis L. S.: W4: Who? when? where? what? a real time system for detecting and tracking people. [in:] Third Face and Gesture Recognition Conference, Apr. 1998, pp. 222-227.
Jiang H., Ardo H., Owall V.: Hardware accelerator design for video segmentation with multi-modal background modelling. [in:] IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005., , vol. 2, May. 2005, pp. 1142-1145.
Juvonen M.P. T., Coutinho J. G. F., Luk W.: Hardware architectures for adaptive background modelling. [in:] 3rd Southern Conference on Programmable Logic, 2007. SPL ’07., Feb. 2007, pp. 149-154.
Kim K., Chalidabhongse T. H., Harwood D., Davis L.: Real-time foregroundbackground segmentation using codebook model. Real-Time Imaging, 11, Jun. 2005, pp. 172-185.
Li Q-Z., He D-X., Wang B.: Effective moving objects detection based on clustering background model for video surveillance. [in:] Proc. of the 2008 Congress on Image and Signal Processing, vol. 3, CISP ’08, Washington, DC, USA, 2008. IEEE Computer Society, pp. 656-660.
Makarov A.: Comparison of background extraction based intrusion detection algorithms. [in:] International Conference on Image Proc., 1996. Proc., vol. 1, Sep. 1996, pp. 521-524.
McFarlane N. J. B., Schofield C.P.: Segmentation and tracking of piglets in images. Machine Vision and Applications, 8, 1995, pp. 187–193. 10.1007/BF01215814.
Mueller R., Teubner J., Alonso G.: Data processing on FPGAs. [in:] Very Large Data Bases Conference, Lyon, 2009.
Oliveira J., Printes A., Freire R. C. S., Melcher E., Silva I. S. S.: FPGA architecture for static background subtraction in real time. [in:] Proc. of the 19th annual symposium on Integrated circuits and systems design, SBCCI ’06, New York, NY, USA, 2006, pp. 26-31. ACM.
Qin R., Liao S., Lei Z., Li S. Z.: Moving cast shadow removal based on local descriptors. [in:] 20th International Conference on Pattern Recognition (ICPR), 2010, pages 1377–1380, Aug. 2010.
Salem M. A. M., Klaus K., Winkler F., Meffert B.: Resolution mosaic-based smart camera for video surveillance. [in:] Third ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2009., Sep. 2009, pp. 1-7.
Stauffer C., Grimson W. E. L.: Adaptive background mixture models for realtime tracking. [in:] IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, volume 2, 1999, pp. (xxiii+637+663).
Wren C. R., Azarbayejani A., Darrell T., Pentland A.P.: Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), Jul. 1997, pp. 780-785.