Tomasz Kryjak, Marek Gorgoń


The article presents the concept of real-time implementation computing tasks in videosurveillance systems. A pipeline implementation of a multimodal background generationalgorithm for colour video stream and a moving objects segmentation based on brightness,colour and textural information in reconfigurable resources of FPGA device is described.System architecture, resource usage and segmentation results are presented.


background generation; background subtraction; image processing; hardware acceleration; FPGA

Full Text:



Abutaleb M. M., Hamdy A., Abuelwafa M. E., Saad E. M.: FPGA-based objectextraction based on multimodal sigma – delta background estimation. [in:] 2nd International Conference on Computer, Control and Communication, 2009. IC4 2009., Feb. 2009, pp. 1-7.

Appiah K., Hunter A.: A single-chip FPGA implementation of real-time adaptive background model. [in:] IEEE International Conference on Field-Programmable Technology, 2005. Proceedings., Dec. 2005, pp. 95-102.

Benedek C., Szir´anyi T.: Study on color space selection for detecting cast shadows in video surveillance. Int. J. Imaging Syst. Technol., 17, Oct. 2007, pp. 190-201.

Butler D., Sridharan S., Bove V. M. Jr.: Real-time adaptive background segmentation. [in:] IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., volume 3, vol. 3, Apr. 2003, pages III – 349–52.

Elgammal A., Harwood D., Davis L.: Non-parametric model for background subtraction. [in:] FRAME-RATE WORKSHOP, IEEE, 2000, pp. 751-767.

Elhabian S. Y., El-Sayed K. M., Ahmed S. H.: Moving Object Detection in Spatial Domain using Background Removal Techniques – State-of-Art. Recent Patents on Computer Science, 1, 2008, pp. 32-34.

Gorgon M., Pawlik P., Jablonski M., Przybylo J.: FPGA-based road traffic videodetector. [in:] Proc. of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, Washington, DC, USA, 2007. IEEE Computer Society, pp. 412-419.

Haritaoglu I., Harwood D., Davis L. S.: W4: Who? when? where? what? a real time system for detecting and tracking people. [in:] Third Face and Gesture Recognition Conference, Apr. 1998, pp. 222-227.

Jiang H., Ardo H., Owall V.: Hardware accelerator design for video segmentation with multi-modal background modelling. [in:] IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005., , vol. 2, May. 2005, pp. 1142-1145.

Juvonen M.P. T., Coutinho J. G. F., Luk W.: Hardware architectures for adaptive background modelling. [in:] 3rd Southern Conference on Programmable Logic, 2007. SPL ’07., Feb. 2007, pp. 149-154.

Kim K., Chalidabhongse T. H., Harwood D., Davis L.: Real-time foregroundbackground segmentation using codebook model. Real-Time Imaging, 11, Jun. 2005, pp. 172-185.

Li Q-Z., He D-X., Wang B.: Effective moving objects detection based on clustering background model for video surveillance. [in:] Proc. of the 2008 Congress on Image and Signal Processing, vol. 3, CISP ’08, Washington, DC, USA, 2008. IEEE Computer Society, pp. 656-660.

Makarov A.: Comparison of background extraction based intrusion detection algorithms. [in:] International Conference on Image Proc., 1996. Proc., vol. 1, Sep. 1996, pp. 521-524.

McFarlane N. J. B., Schofield C.P.: Segmentation and tracking of piglets in images. Machine Vision and Applications, 8, 1995, pp. 187–193. 10.1007/BF01215814.

Mueller R., Teubner J., Alonso G.: Data processing on FPGAs. [in:] Very Large Data Bases Conference, Lyon, 2009.

Oliveira J., Printes A., Freire R. C. S., Melcher E., Silva I. S. S.: FPGA architecture for static background subtraction in real time. [in:] Proc. of the 19th annual symposium on Integrated circuits and systems design, SBCCI ’06, New York, NY, USA, 2006, pp. 26-31. ACM.

Qin R., Liao S., Lei Z., Li S. Z.: Moving cast shadow removal based on local descriptors. [in:] 20th International Conference on Pattern Recognition (ICPR), 2010, pages 1377–1380, Aug. 2010.

Salem M. A. M., Klaus K., Winkler F., Meffert B.: Resolution mosaic-based smart camera for video surveillance. [in:] Third ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2009., Sep. 2009, pp. 1-7.

Stauffer C., Grimson W. E. L.: Adaptive background mixture models for realtime tracking. [in:] IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, volume 2, 1999, pp. (xxiii+637+663).

Wren C. R., Azarbayejani A., Darrell T., Pentland A.P.: Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), Jul. 1997, pp. 780-785.



  • There are currently no refbacks.