PRELIMINARY STUDY ON ARTIFICIAL INTELLIGENCE METHODS FOR CYBERSECURITY THREAT DETECTION INCOMPUTER NETWORKS BASED ON RAWDATA PACKETS

Authors

  • Aleksander Ogonowski National Centre For Nuclear Research
  • Michał Żebrowski National Centre For Nuclear Research
  • Arkadiusz Ćwiek National Centre For Nuclear Research
  • Tobiasz Jarosiewicz National Centre For Nuclear Research
  • Konrad Klimaszewski National Centre For Nuclear Research
  • Adam Padee National Centre For Nuclear Research
  • Piotr Wasiuk Piotr.Wasiuk@ncbj.gov.pl
  • Michał Wójcik National Centre For Nuclear Research

DOI:

https://doi.org/10.7494/csci.2025.26.SI.7079

Abstract

Most of the intrusion detection methods in computer networks are based on
traffic flow characteristics. However, this approach may not fully exploit the
potential of deep learning algorithms to directly extract features and patterns
from raw packets. Moreover, it impedes real-time monitoring due to the neces-
sity of waiting for the processing pipeline to complete and introduces depen-
dencies on additional software components.
In this paper, we investigate deep learning methodologies capable of de-
tecting attacks in real-time directly from raw packet data within network traffic.
Our investigation utilizes the CIC IDS-2017 dataset, which includes both benign
traffic and prevalent real-world attacks, providing a comprehensive foundation
for our research.

Downloads

Download data is not yet available.

References

References

[1] Anderson J.P.: Computer security threat monitoring and surveillance, Technical

Report, James P Anderson Company, 1980.

[2] Buczak A., Guven E.: A Survey of Data Mining and Machine Learning Meth-

ods for Cyber Security Intrusion Detection, IEEE Communications Surveys &

Tutorials, vol. 18(2), pp. 1153–1176, 2016. doi: 10.1109/COMST.2015.2494502.

[3] Chen P., Desmet L., Huygens C.: A Study on Advanced Persistent Threats. In:

B. De Decker, A. Zúquete (eds.), Communications and Multimedia Security. CMS

2014, Lecture Notes in Computer Science, vol. 8735, pp. 63–72, Springer, Berlin,

Heidelberg, 2014. doi: 10.1007/978-3-662-44885-4_5.

[4] CICFlowMeter tool, https://www.unb.ca/cic/research/applications.html. Ac-

cessed: 2024-05-05.

[5] Deng J., Dong W., Socher R., Li L.J., Li K., Fei-Fei L.: ImageNet: A large-scale

hierarchical image database. In: 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[6] Díaz-Verdejo J., Muñoz Calle J., Estepa Alonso A., Estepa Alonso R., Madin-

abeitia G.: On the Detection Capabilities of Signature-Based Intrusion Detec-

tion Systems in the Context of Web Attacks, Applied Sciences, vol. 12(2), 2022.

doi: 10.3390/app12020852.

7] Engelen G., Rimmer V., Joosen W.: Troubleshooting an intrusion detection

dataset: the CICIDS2017 case study. In: 2021 IEEE Security and Privacy Work-

shops (SPW), pp. 7–12, IEEE, 2021. doi: 10.1109/spw53761.2021.00009.

[8] Guezzaz A., Benkirane S., Azrour M., Khurram S.: A Reliable Network Intrusion

Detection Approach Using Decision Tree with Enhanced Data Quality, Security

and Communication Networks, vol. 2021(1), 1230593, 2021. doi: 10.1155/2021/

1230593.

[9] Halbouni A., Gunawan T.S., Habaebi M.H., Halbouni M., Kartiwi M., Ahmad R.:

CNN-LSTM: hybrid deep neural network for network intrusion detection system,

IEEE Access, vol. 10, pp. 99837–99849, 2022. doi: 10.1109/access.2022.3206425.

[10] Hnamte V., Hussain J.: Dependable intrusion detection system using deep

convolutional neural network: A novel framework and performance evaluation

approach, Telematics and Informatics Reports, vol. 11, 2023. doi: 10.1016/

j.teler.2023.100077.

[11] Jose J., Jose D.V.: Deep learning algorithms for intrusion detection systems in

internet of things using CIC-IDS 2017 dataset, International Journal of Elec-

trical and Computer Engineering (IJECE), vol. 13(1), pp. 1134–1141, 2023.

doi: 10.11591/ijece.v13i1.pp1134-1141.

[12] Lee J., Kim J., Kim I., Han K.: Cyber threat detection based on artificial neural

networks using event profiles, IEEE Access, vol. 7, pp. 165607–165626, 2019.

doi: 10.1109/access.2019.2953095.

[13] Makrakis G.M., Kolias C., Kambourakis G., Rieger C., Benjamin J.: Indus-

trial and Critical Infrastructure Security: Technical Analysis of Real-Life Se-

curity Incidents, IEEE Access, vol. 9, pp. 165295–165325, 2021. doi: 10.1109/

ACCESS.2021.3133348.

[14] Mathieson M.: Reordercap tool. https://www.wireshark.org/docs/man-pages/

reordercap.html. Accessed: 2024-05-05.

[15] McAfee report, 2016. https://web.archive.org/web/20171026083736/https:

//www.mcafee.com/us/resources/reports/rp-threats-predictions-2016.pdf. Ac-

cessed: 2024-05-05.

[16] Moustafa R., Slay J.: A comprehensive data set for network intrusion detec-

tion systems, School of Engineering and Information Technology University of

New South Wales at the Australian Defense Force Academy Canberra, Australia,

UNSW-NB15, 2015.

[17] Muthuppalaniappan Menaka L., Stevenson K.: Healthcare cyber-attacks and the

COVID-19 pandemic: an urgent threat to global health, International Journal for

Quality in Health Care, vol. 33(1), mzaa117, 2020. doi: 10.1093/intqhc/mzaa117.

[18] Pcapfix. https://github.com/Rup0rt/pcapfix. Accessed: 2024-05-05.

[19] Praanna K., Sruthi S., Kalyani K., Tejaswi A.S.: A CNN-LSTM model for in-

trusion detection system from high dimensional data, Journal of Information

and Computational Science, vol. 10(3), pp. 1362–1370, 2020. doi: 10.5281/

zenodo.7911821.

[20] Rid T., Buchanan B.: Attributing Cyber Attacks, Journal of Strategic Studies,

vol. 38(1-2), pp. 4–37, 2015. doi: 10.1080/01402390.2014.977382.

[21] Sharafaldin I., Lashkari A.H., Ghorbani A.A.: Toward generating a new intrusion

detection dataset and intrusion traffic characterization. In: Proceedings of the 4th

International Conference on Information Systems Security and Privacy ICISSP

– Volume 1, pp. 108–116, 2018. doi: 10.5220/0006639801080116.

[22] Simonyan K., Vedaldi A., Zisserman A.: Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps, 2014. https://

arxiv.org/abs/1312.6034.

[23] Simonyan K., Zisserman A.: Very Deep Convolutional Networks for Large-Scale

Image Recognition, arXiv preprint arXiv:14091556, 2014.

[24] Soltani M., Siavoshani M.J., Jahangir A.H.: A content-based deep intrusion

detection system, International Journal of Information Security, vol. 21(3),

pp. 547–562, 2022.

[25] Sulaiman N.S., Nasir A., Othman W., Fahmy S., Aziz N., Yacob A., Samsudin N.:

Intrusion Detection System Techniques: A Review, Journal of Physics: Confer-

ence Series, vol. 1874, 012042, 2021. doi: 10.1088/1742-6596/1874/1/012042.

[26] Symantec Corporation: Internet Security Threat Report, Symantec Corporation,

2017.

[27] Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z.: Rethinking the Incep-

tion Architecture for Computer Vision. In: 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016. doi: 10.1109/

CVPR.2016.308.

[28] Talukder M.A., Islam M.M., Uddin M.A., Hasan K.F., Sharmin S., Alyami S.A.,

Moni M.A.: Machine learning-based network intrusion detection for big and im-

balanced data using oversampling, stacking feature embedding and feature ex-

traction, Journal of Big Data, vol. 11(1), p. 33, 2024. doi: 10.1186/s40537-024-

00886-w.

[29] Tan M., Le Q.V.: EfficientNet: Rethinking Model Scaling for Convolutional Neu-

ral Networks, 2020.

[30] Zhang Y., Chen X., Guo D., Song M., Teng Y., Wang X.: PCCN: parallel

cross convolutional neural network for abnormal network traffic flows detection

in multi-class imbalanced network traffic flows, IEEE Access, vol. 7, pp. 119904–

119916, 2019. doi: 10.1109/access.2019.2933165

Downloads

Published

2025-07-29

Issue

Section

Articles

How to Cite

Ogonowski, A., Żebrowski, M., Ćwiek, A., Jarosiewicz, T., Klimaszewski, K., Padee, A. ., Wasiuk, P., & Wójcik, M. (2025). PRELIMINARY STUDY ON ARTIFICIAL INTELLIGENCE METHODS FOR CYBERSECURITY THREAT DETECTION INCOMPUTER NETWORKS BASED ON RAWDATA PACKETS. Computer Science, 26(SI). https://doi.org/10.7494/csci.2025.26.SI.7079