IMPROVING PET SCANNER TIME-OF-FLIGHTRESOLUTION USING ADDITIONAL PROMPT PHOTON
DOI:
https://doi.org/10.7494/csci.2025.26.SI.7057Abstract
Positronium Imaging requires two classes of events: double-coincidences originated from pair of
back-to-back annihilation photons and triple-coincidences comprised with two annihilation photons
and one additional prompt photon. The standard reconstruction of the emission position along the
line-of-response of triple-coincidence event is the same as in the case of double-coincidence event;
an information introduced by the high-energetic prompt photon is ignored. In this study, we propose
to extend the reconstruction of position of triple-coincidence event by taking into account the time
and position of prompt photon. We incorporate the knowledge about the positronium lifetime distribution
and discuss the limitations of the method based on the simulation data. We highlight that the
uncertainty of the estimate provided by prompt photon alone is much higher than the standard deviation
estimated based on two annihilation photons. We finally demonstrate the extent of resolution
improvement that can be obtained when estimated using three photons.
Downloads
References
References
[1] Bass S., Mariazzi S., Moskal P., E. S.: Colloquium: Positronium physics and
biomedical applications, Rev Mod Phys, vol. 95, 021002, 2023. doi: 10.1103/
RevModPhys.95.021002.
[2] Cassidy D.: Experimental progress in positronium laser physics, European Phys-
ical Journal D, vol. 72, 53, 2018. doi: 10.1140/epjd/e2018-80721-y.
[3] Cates J., Levin C.: Evaluation of a clinical TOF-PET detector design that
achieves less than 100 ps coincidence time resolution, Physics in Medicine and
Biology, vol. 63, 115011, 2018. doi: 10.1088/1361-6560/aac504.
[4] Conti M., Bendriem B.: The new opportunities for high time resolution clinical
TOF PET, Clin Trans Imag, vol. 7, pp. 139–147, 2019. doi: 10.1007/s40336-019-
00316-5.
[5] Giovagnoli D., Bousse A., Beaupere N., Canot C., Cussonneau J., Diglio S.,
Carreres A., et al.: A Pseudo-TOF Image Reconstruction Approach for Three-
Gamma Small Animal Imaging, IEEE Transactions on Radiation and Plasma
Medical Sciences, vol. 5, pp. 826–834, 2020. doi: 10.1109/TRPMS.2020.3046409.
[6] Harpen M.: Positronium: Review of symmetry, conserved quantities and de-
cay for the radiological physicist, Medical Physics, vol. 31, pp. 57–61, 2003.
doi: 10.1118/1.1630494.
[7] Huang B., Li T., Arino-Estrada G., Dulski K., Shopa R., Moskal P., Stepien E.,
et al.: Split: Statistical positronium lifetime image reconstruction via time-
thresholding, IEEE Transactions on Medical Imaging, vol. 43, 2148, 2024.
doi: 10.1109/TMI.2024.3357659.
[8] Jacobs O.: Introduction to Control Theory, Oxford University Press, 1993.
[9] Jasinska B., Moskal P.: A New PET Diagnostic Indicator Based on the Ratio of
3 gamma to 2 gamma Positron Annihilation, Acta Physica Polonica B, vol. 48,
1577, 2017. doi: 10.5506/APhysPolB.48.1577.
[10] Jasinska B., Zgardzinska B., Cholubek G., Gorgol M., Wiktor K., Wysoglad K.,
Bialas P., et al.: Human Tissues Investigation Using PALS Technique, Acta Phys-
ica Polonica B, vol. 48, 1737, 2017. doi: 10.5506/APhysPolB.
[11] Jasinska B., Zgardzinska B., Cholubek G., Pietrow M., Gorgol M., Wiktor K.,
Wysoglad K., et al.: Human Tissue Investigations Using PALS Technique - Free
Radicals Influence, Acta Physica Polonica A, vol. 132, 1556, 2017. doi: 10.12693/
APhysPolA.132.1556.
[12] Jegal J., Jeong D., Seo E., Park H., Kim H.: Convolutional neural network-
based reconstruction for positronium annihilation localization, Scientific Reports,
vol. 12, 8531, 2022. doi: 10.1038/s41598-022-11972-5.
[13] Kalman R.: A New Approach to Linear Filtering and Prediction Problems, Trans-
action of the ASME-Journal of Basic Engineering, pp. 35–45, 1960.
[14] Karp J., Surti S., Daube-Witherspoon M., Muehllehner G.: Benefit of Time-of-
Flight in PET: Experimental and Clinical Results, Journal of Nuclear Medicine,
vol. 49, pp. 462–470, 2008. doi: 10.2967/jnumed.107.044834.
[15] Moskal P., Baran J., Bass S., Choinski J., Chug N., Curceanu C., Czerwinski E.,
et al.: Positronium image of the human brain in vivo, Science Advances, vol. 10,
2024. doi: 10.1126/sciadv.adp2840.
[16] Moskal P., Dulski K., Chug N., Curceanu C., Czerwinski E., Dadgar M., Gajew-
ski J., et al.: Positronium imaging with the novel multiphoton PET scanner,
Science Advances, vol. 7, 4394, 2021. doi: 10.1126/sciadv.abh4394.
[17] Qi J., Huang B.: Positronium lifetime image reconstruction for TOF PET,
IEEE Transactions on Medical Imaging, vol. 41, 2848, 2022. doi: 10.1109/
TMI.2022.3174561.
[18] Schaart D., Seifert S., Vinke R., van Dam H., Dendooven P., Lohner H., Beek-
man F.: LaBr3: Ce and SiPMs for time-of-flight PET: achieving 100 ps coin-
cidence resolving time, Physics in Medicine and Biology, vol. 55, pp. N179–89,
2010. doi: 10.1088/0031-9155/55/7/N02.
[19] Shibuya K., Saito H., Nishikido F., Takahashi M., Yamaya T.: Oxygen sensing
ability of positronium atom for tumor hypoxia imaging, Communications Physics,
vol. 3, 173, 2020. doi: 10.1038/s42005-020-00440-z.
[20] Shibuya K., Saito H., Tashima H., Yamaya T.: Using inverse Laplace transform
in positronium lifetime imaging, Physics in Medicine and Biology, vol. 67, 025009,
2022. doi: 10.1088/1361-6560/ac499b.
[21] Shopa R., Dulski K.: Multi-photon time-of-flight MLEM application for the
positronium imaging in J-PET, Bio-Algorithms and Med-Systems, vol. 18, 135,
2022. doi: 10.2478/bioal-2022-0082.
[22] Shopa R., Dulski K.: Positronium imaging in J-PET with an iterative activ-
ity reconstruction and a multi-stage fitting algorithm, Bio-Algorithms and Med-
Systems, vol. 19, 2023. doi: 10.5604/01.3001.0054.1826.
[23] Słomka P., Pan T., Germano G.: Recent advances and future progress in
PET instrumentation, Semin Nucl Med, vol. 46, pp. 5–19, 2016. doi: 10.1053/
j.semnuclmed.2015.09.006.
24] van Sluis J., de Jong J., Schaar J., Noordzij W., van Snick P., Dierckx R.,
Borra R., et al.: Performance Characteristics of the Digital Biograph Vision
PET/CT System, Journal of Nuclear Medicine, vol. 60, pp. 1031–1036, 2019.
doi: 10.2967/jnumed.118.215418.
[25] Sorenson H.: Least-Squares estimation: from Gauss to Kalman, IEEE Spectrum,
vol. 7, pp. 63–68, 1970.
[26] Steinberger W., Mercolli L., Breuer J., Sari H., Parzych S., Niedzwiecki S.,
Lapkiewicz G., et al.: Positronium lifetime validation measurements using a
long-axial field-of-view positron emission tomography scanner, EJNMMI Physics,
vol. 11, 76, 2024. doi: 10.1186/s40658-024-00678-4.
[27] Takyu S., Nishikido F., Tashima H., Akamatsu G., Matsumoto K., Takahashi M.,
Yamaya T.: Positronium lifetime measurement using a clinical PET system for
tumor hypoxia identification, Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, vol. 1065, 169514, 2024. doi: 10.1016/j.nima.2024.169514.
[28] Tao S.: Positronium Annihilation in Molecular Substances, J Chem Phys, vol. 56,
pp. 5499–5510, 1972. doi: 10.1063/1.1677067.
[29] Zgardzinska B., Cholubek G., Jarosz B., Wysoglad K., Gorgol M., Gozdziuk M.,
Cholubek M., et al.: Studies on healthy and neoplastic tissues using positron an-
nihilation lifetime spectroscopy and focused histopathological imaging, Scientific
Reports, vol. 10, 11890, 2020. doi: 10.1038/s41598-020-68727-3.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Computer Science

This work is licensed under a Creative Commons Attribution 4.0 International License.