Applications of Alternating Direction Solver for simulations of time-dependent problems
DOI:
https://doi.org/10.7494/csci.2017.18.2.117Keywords:
FEM, Isogeometric Analysis, Alternating Direction SolverAbstract
This paper deals with application of Alternating Direction solver (ADS) to nonstationary
linear elasticity problem solved with isogeometric FEM. Employing
tensor product B-spline basis in isogeometric analysis under some restrictions
leads to system of linear equations with matrix possessing tensor product structure.
Alternating Direction Implicit algorithm is a direct method that exploits
this structure to solve the system in O (N ), where N is a number of degrees
of freedom (basis functions). This is asymptotically faster than state-of-theart
general purpose multi-frontal direct solvers. In this paper we also present
the complexity analysis of ADS incorporating dependence on order of B-spline
basis.
Downloads
References
Anderson E., Bai Z., Dongarra J., Greenbaum A., McKenney A., Croz J.D., Hammerling S., Demmel J., Bischof C., Sorensen D.: LAPACK: A Portable Linear Algebra Library for High-performance Computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing ’90, pp. 2–11. IEEE Computer Society Press, Los Alamitos, CA, USA, 1990. ISBN 0-89791412-0. URL http://dl.acm.org/citation.cfm?id=110382.110385.
Birkhoff G., Varga R.S., Young D.: Alternating Direction Implicit Methods. Advances in Computers, vol. 3, pp. 189 – 273. Elsevier, 1962.
Collier N., Pardo D., Dalcin L., Paszynski M., Calo V.: The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers. In: Computer Methods in Applied Mechanics and Engineering, vol. 213216(0), pp. 353 – 361, 2012. ISSN 0045-7825.
Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley Publishing, 1st ed., 2009. ISBN 0470748737, 9780470748732.
Duff I.S., Reid J.K.: The Multifrontal Solution of Indefinite Sparse Symmetric Linear. In: ACM Trans. Math. Softw., vol. 9(3), pp. 302–325, 1983. ISSN 00983500.
D.W. Peaceman H.R.J.: The numerical solution of parabolic and elliptic differential equations. In: Journal of Society of Industrial and Applied Mathematics, (3), 1955.
E.L. Wachspress G.H.: An alternating-direction-implicit iteration technique. In: Journal of Society of Industrial and Applied Mathematics, (8), 1960.
Gao L., Calo V.M.: Fast isogeometric solvers for explicit dynamics. In: Computer Methods in Applied Mechanics and Engineering, vol. 274(0), pp. 19 – 41, 2014. ISSN 0045-7825.
Gao L., Calo V.M.: Preconditioners based on the Alternating-Direction-Implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients. In: Journal of Computational and Applied Mathematics, vol. 273(0), pp. 274 – 295, 2015. ISSN 0377-0427.
Golub G.G., Loan C.F.V.: Matrix Computations. The Johns Hopkins University Press, 4th ed., 2013.
Hawkins-Daarud A., Prudhomme S., van der Zee K., Oden J.: Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth. In: Journal of Mathematical Biology, vol. 67(6-7), pp. 1457–1485, 2013. ISSN 0303-6812. URL http://dx.doi.org/10.1007/ s00285-012-0595-9.
Hawkins-Daarud A., van der Zee K.G., Tinsley Oden J.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. In: International Journal for Numerical Methods in Biomedical Engineering, vol. 28(1), pp. 3–24, 2012. ISSN 2040-7947. URL http://dx.doi.org/10.1002/cnm.1467.
Hughes T., Cottrell J., Bazilevs Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. In: Computer Methods in Applied Mechanics and Engineering, vol. 194(3941), pp. 4135 – 4195, 2005. ISSN 00457825.
J. Douglas H.R.: On the numerical solution of heat conduction problems in two and three space variables. In: Transactions of American Mathematical Society, (82), 1956.
Los M., Wozniak M., Paszynski M., Dalcin L., Calo V.M.: Parallel alternating direction preconditioner for isogeometric simulations of explicit dynamics. 1st Pan-American Congress on Computational Mechanics, Buenos Aires, April 27– 29.
Los M., Wozniak M., Paszynski M., Dalcin L., Calo V.M.: Dynamics with matrices possesing Kronecker product structure. In: Procedia Computer Science, (51), pp. 286 – 295, 2015.
Marsh D.: Applied Geometry for Computer Graphics and CAD. Springer Undergraduate Mathematics Series. Sprlinger-Verlag London, 2005.
N. Collier L. Dalcin V.C.: PetIGA: High-Performance Isogeometric Analysis. In: arxiv, (1305.4452), 2013. Http://arxiv.org/abs/1305.4452.
Piegl L., Tiller W.: The NURBS Book (2nd ed.). Springer-Verlag New York, Inc., New York, NY, USA, 1997. ISBN 3-540-61545-8.
Wozniak M., Los M., Paszynski M., Dalcin L., Calo V.M.: Parallel fast isogeometric solvers for explicit dynamic. In: Computing and Informatics, 2015.