Application of projection-based interpolation algorithm for non-stationary problem

Authors

  • Maciej Woźniak AGH University of Science and Technology, Kawiory 21, 30-055, Kraków
  • Maciej Paszyński AGH University of Science and Technology, Kawiory 21, 30-055, Kraków

DOI:

https://doi.org/10.7494/csci.2016.17.3.297

Keywords:

L-Shape, h-adaptivity, parallel, L2 projection, non-stationary

Abstract

In this paper we present a solver for non-stationary problems using L2 projection and h-adaptations. The solver utilizes the Euler time integration scheme for time evolution mixed with the projection based interpolation techniques for solving the L2 projections problem at every time step. The solver is tested on the model problem of the heat transfer in L-shape domain. We show that our solver delivers linear computational cost at every time step.

Downloads

Download data is not yet available.

Author Biography

  • Maciej Woźniak, AGH University of Science and Technology, Kawiory 21, 30-055, Kraków
    Maciej Wozniak is a third year PhD student of Computer Science at AGH University, Krakow, Poland.
    His research interests include optimization of solver algorithms for different architectures of parallel
    machines, isogeometric analysis as well as tree algorithms.

References

Calo V.M., Collier N.O., Pardo D., Paszyński M.: Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis. In: Procedia Computer Science, vol. 4, pp. 1854-1861, 2011.

Demkowicz L.: Computing with hp Adaptive Finite Element Method Part I. One and Two Dimensional Problems. CRC Press, Taylor & Francis, 2006.

Demkowicz L.: Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations. In: Lecture Notes in Mathematics, vol. 1939, pp. 101-158, 2008.

Duff I.S., Reid J.K.: The multifrontal solution of indefinite sparse symmetric linear systems. In: ACM Transactions on Mathematical Software, vol. 9, pp. 302-325, 1983.

Duff I.S., Reid J.K.: The multifrontal solution of unsymmetric sets of linear systems. In: SIAM Journal on Scientific and Statistical Computing, vol. 5, pp. 633-641, 1984.

Goik D., Jopek K., Paszyński M., Lenharth A., Nguyen D., Pingali K.: Graph Grammar based Multi-thread Multi-frontal Direct Solver with Galois Scheduler. In: Procedia Computer Science, vol. 29, pp. 960-969, 2014.

Goik D., Sieniek M., Paszyński M., Madej L.: Employing an Adaptive Projection-based Interpolation to Prepare Discontinuous 3D Material Data for Finite Element Analysis. In: Procedia Computer Science, vol. 18, pp. 1535-1544, 2013.

Goik D., Sieniek M., Woźniak M., Paszyńska A., Paszyński M.: Hypergraph Grammar based Adaptive Linear Computational Cost Projection Solvers for Two and Three Dimensional Modeling of Brain. In: Procedia Computer Science, International Conference on Computational Science, Cairns, Australia, 10-12.06.2014, vol. 29, pp. 1002-1013. Elsevier, 2014.

Gurgul P.: A linear complexity direct solver for h-adaptive grids with point singularities. In: Procedia Computer Science, vol. 29, pp. 1090-1099, 2014.

Gurgul P., Sieniek M., Magiera K., Skotniczny M.: Application of multi-agent paradigm to hp-adaptive projection-based interpolation operator. In: Journal of Computational Science, Elsevier, vol. 4(3), pp. 164-169, 2011.

Gurgul P., Sieniek M., Paszyński M., Madej L.: Three-dimensional adaptive algorithm for continuous approximations of material data using space projection. In: Computer Methods in Materials Science, vol. 13(2), pp. 245-250, 2013. ISSN 1641-8581.

Gurgul P., Sieniek M., Paszyński M., Madej L., Collier N.: Two dimensional hp-adaptive algorithm for continuous approximations of material data using space projections. In: Computer Science, AGH University of Science and Technology Press, vol. 14(1), pp. 97-112, 2013.

Larson M.G., Bengzon F.: The Finite Element Method: Theory, Implementation, and Practice. Springer, 2010.

Paszyńska A., Paszyński M., Jopek K., Woźniak M., Goik D., Gurgul P., AbouEisha H., Moshkov M., Calo V.M., Lenerth A., Nguyen D., Pingali K.: Quasi-Optimal Elimination Trees for 2D Grids with singularities. In: Scientific Programming, vol. 2015(Article ID 303024), 2015.

Sieniek M., Paszyński M., Madej L., Goik D.: Adaptive Projection-Based Interpolation as a pre-processing tool in the Finite Element workflow for elasticity simulations of the dual phase microstructures. In: Steel Research International, vol. 85, pp. 1109-1119, 2014.

Downloads

Published

2016-09-23

Issue

Section

Articles

How to Cite

Application of projection-based interpolation algorithm for non-stationary problem. (2016). Computer Science, 17(3), 297. https://doi.org/10.7494/csci.2016.17.3.297

Most read articles by the same author(s)

1 2 > >>