Two-dimensional HP-adaptive Algorithm for Continuous Approximations of Material Data Using Space Projection


  • Piotr Gurgul
  • Marcin Sieniek
  • Maciej Paszynski
  • Lukasz Madej
  • Nathan Collier



adaptive finite element method, projection operator, digital material representation


In this paper we utilize the concept of the L2 and H1 projections used toadaptively generate a continuous approximation of an input material data inthe finite element (FE) base. This approximation, along with a correspondingFE mesh, can be used as material data for FE solvers. We begin with a brieftheoretical background, followed by description of the hp-adaptive algorithmadopted here to improve gradually quality of the projections. We investigatealso a few distinct sample problems, apply the aforementioned algorithms andconclude with numerical results evaluation.


Download data is not yet available.


Demkowicz L.: Computing With Hp-adaptive Finite Elements. Vol. 1: One and Two Dimensional Elliptic and Maxwell Problems. Chapman & Hall CRC, Texas, 2006.

Demkowicz L. F.: Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume 1 One and Two Dimensional Elliptic and Maxwell problems. CRC Press, United States of America, 2007.

Gurgul P., Sieniek M., Magiera K., Skotniczny M.: Application of multi-agent paradigm to hp-adaptive projection-based interpolation operator. Journal of Computational Science, 2011.

Madej L., Cybulka P., Perzyński K., Rauch L.: Numerical analysis of strain inhomogeneities during deformation on the basis of the three dimensional digital material representation. Computer Methods in Materials Science, 10:375–380, 2011.

Madej L., Rauch L., Perzyński K., Cybulka P.: Digital material representation as an efficient tool for strain inhomogeneities analysis at the micro-scale level. Archives of Civil and Mechanical Engineering, 11:661–679, 2011.

Paszyński M.: Graph Grammar-Driven Parallel Adaptive PDE Solvers. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Krakow, 2009.

Paszyński M., Pardo D., Torres-Verdin C., Demkowicz L., Calo V.: A parallel direct solver for self-adaptive hp finite element method. Journal of Parallel and Distributed Computing, 70(3):270–281, 2010.

Paszyński M., Romkes A., Collister E., Meiring J., Demkowicz L.: On the modeling of step-and-flash imprint lithography using molecular statics models. CG Willson ICES Report, pp. 05–38, 2005.

Sieniek M., Gurgul P., Skotniczny M., Magiera K., Paszyński M.: Agent-oriented image processing with the hp-adaptive projection-based interpolation method. Procedia Computer Science, 4(1):1844–1853, 2011.




How to Cite

Gurgul, P., Sieniek, M., Paszynski, M., Madej, L., & Collier, N. (2013). Two-dimensional HP-adaptive Algorithm for Continuous Approximations of Material Data Using Space Projection. Computer Science, 14(1), 97.