ELECTROCHEMICAL BEHAVIOR OF TELLURIUM IN ACIDIC NITRATE SOLUTIONS

Authors

  • Ewa Rudnik AGH University of Science and Technology, Faculty of Non-Ferrous Metals; Al. Mickiewicza 30; 30-059 Cracow, Poland
  • Przemysław Biskup Royal Group, PO Box 5151, Eastern Ring Road, Abu Dhabi, United Arab Emirates

DOI:

https://doi.org/10.7494/mafe.2014.40.1.15

Keywords:

tellurium, cyclic voltammetry, pH, electrochemistry, nitrate

Abstract

Electrochemistry of tellurium stationary electrode was studied in acidic nitrate solutions with pH 1.5 – 3.0. Cyclic voltammetry indicated that two products were formed at potentials above 300 mV (SCE): soluble HTeO2+ (500 mV) and sparingly soluble H2TeO3 (650 mV), but the former seemed to be an intermediate product for TeO2 precipitation on the electrode surface. Formation of the solid products as porous layers was almost undisturbed and no electrode passivation was observed. H2TeO3 and TeO2 dissolved to HTeO2+ under acidic electrolyte, but this process was hindered by pH increase. Cathodic polarization of tellurium electrode below -800 mV was accompanied by evolution of H2Te, which was then oxidized at the potentials approx. -700 mV. H2Te generated in the electrochemical reaction decomposed to elemental tellurium as black powdery precipitates in the bulk of the solution and a bright film drifting on the electrolyte surface.

Downloads

Download data is not yet available.

References

A.J. Bard (Ed.), “Encyclopedia of electrochemistry of the elements”. Vol.4., Marcel Dekker, New York, 1975, 393-443

“Gmelin handbook of inorganic chemistry. Te.”, Suppl. 42 (1983) 224-281

M-J. Barbier, A-M. de Becdelievre, J. de Becdelievre, J.Electroanal.Chem., 94 (1978) 47-57

J.M. Rosamilia, B. Miller, J. Electroanal. Chem., 215 (1986) 261-271

E. Mori, C.K. Baker, J.R. Reynolds, K. Rajeshwar, J. Electroanal. Chem., 252 (1988) 441-451

M. Traore, R. Modolo, O. Vittori, Electrochim. Acta, 33(7) (1988) 991-996

B.W.Gregory, M.L. Norton, J.L. Stickney, J. Electroanal.Chem., 293 (1990) 85-101

S.Dennison, S. Webster, J.Electroanal.Chem., 314 (1991) 207-222

T. Montiel-Santillán, O. Solorza, H. Sánchez, J. Solid State Electrochem., 6 (2002) 433-442

D-H.Han, S-J. Choi, S-M.Park, J. Electrochem. Soc., 150 (5) (2003) C342-C346

M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T.Sands, A. M. Stacy, J. Electrochem. Soc., 149 (11) (2002) C546-C554

S.Wen, R. R.Corderman, F.Seker, A-P.Zhang, L. Denault and M. L. Blohm, J. Electrochem. Soc., 153 (9) (2006) C595-C602

S.A. Awad, Electrochim. Acta., 12 (1968) 925-936

S. Jayasekera, I.M. Ritchie, J. Avraamides, Aust.J.Chem., 47(10) (1994) 1953-1965

Pourbaix M., “Atlas of Electrochemical Equilibria in Aqueus Solutions”, Pergamon, New York , 1966

J. O’M. Bockris, R. E. White, B. E.Conwey (Eds.), “Modern aspects of electrochemistry. No. 20”, Plenum Press, New York, London

I.M. Issa, S.A. Awad, J. Phys. Chem., 58 (1954) 948-951

A. Bielański, Fundamentals of inorganic chemistry, Wydawnictwo Naukowe PWN, Warszawa, 1994 (in Polish)

T.Engelhard, E.D. Jones, I.Viney, Y.Mastai, G.Hodes, Thin solid films, 370 (2000) 101-105

D.C.McPhail, Geochim.Cosm. Acta, 59(5) (1995) 851-866

Downloads

Published

2014-10-14

Issue

Section

Articles

How to Cite

ELECTROCHEMICAL BEHAVIOR OF TELLURIUM IN ACIDIC NITRATE SOLUTIONS. (2014). Metallurgy and Foundry Engineering, 40(1), 15. https://doi.org/10.7494/mafe.2014.40.1.15