ELECTRODEPOSITION OF SILVER FROM NITRATE-TARTRATE SOLUTIONS

Authors

  • Ewa Rudnik AGH University of Science and Technology, Faculty of Non-Ferrous Metals; Al. Mickiewicza 30; 30-059 Cracow, Poland

DOI:

https://doi.org/10.7494/mafe.2018.44.2.81

Keywords:

electrolysis, morphology, nitrate, silver, tartrate

Abstract

The electrodeposition of silver from AgNO3 solutions with the addition of L-tartaric acid was investigated. The cathodic reaction was accompanied by low electrode polarization and run under activation control for AgNO3 concentrations of above 70 mM. Tartaric acid only slightly shifted the polarization curves towards more electronegative potentials (by approx. 50 mV), but it did not change the rate-determining step. The activation control of the process resulted in the formation of rough and coherent deposits, while the mixed or diffusion control of the process promoted the formation of dendritic-like structures and spongy deposits.

Downloads

Download data is not yet available.

References

Fischer H.: Elektrolytische Abscheidung und Elektrokristallisation von Metallen. Springer, Berlin – Göttingen – Heidelberg 1954

Winand R., Ham P.V., Colin R., Milojević D.: An attempt to quantify electrodeposit metallographic growth structures. Journal of the Electrochemical Society, 144, 2 (1997), 428–436

Winand R.: Electrocrystallization – theory and applications. Hydrometallurgy, 92, 1–3 (1992), 567–598

Popov K.I., Krstajić N.V., Jerotijević Z.D., Marinković S.R.: Electrocrystallization of silver from silver nitrate solutions at low overpotentials. Surface Technology, 26 (1985), 185–188

Popov K.I., Živković P.M., Nikolić N.D.: Formation of disperse silver deposits by the electrodeposition processes at high overpotentials. International Journal of Electrochemical Science, 7 (2012), 686–696

Mishina K., Okabe T.H., Umetsu Y.: Electrodeposition of silver from nitrate solutions. Shigen-to-Sozai, 117 (2001), 753–758

Vereecken J., Winand R.: Influence of nitrate ions on silver electrocrystallization. Electrochimica Acta, 22 (1977), 401–409

Rudnik E.: Wpływ stężenia jonów srebra Ag+ i gęstości prądu na morfologię osadów katodowych srebra otrzymywanych z roztworu azotanowego. Rudy i Metale Nieżelazne, Recykling, 63, 8 (2018), 3–8

Vereecken J., Winand R.: Influence of inhibitors on the structure of silver deposits obtained by electrolysis of aqueous nitrate solutions. Journal of the Electrochemical Society, 123 (1976), 643–646

Klapka V.: Nucleation of silver on platinum electrode under galvanostatic conditions. Collection of Czechoslovac Chemisty Communications, 36 (1971), 1181–1182

Pangarov N.A., Velinov V.: The orientation of silver nuclei on a platinum substrate. Electrochimica Acta, 11 (1966), 1753–1758

Rudnik E., Burzyńska L.: Influence of organic additives on morphology and purity of cathodic silver. Archives of Metallurgy and Materials, 50, 1 (2006), 137–144

Oniciu L., Muresan L.: Some fundamental aspects of levelling and brightening in metal electrodeposition. Journal of Applied Electrochemistry, 21 (1991), 565–574

Ashiru O.A.: Gelatin inhibition of a silver plating process. Plating and Surface Finishing, 82, 4 (1995), 76–82

Popov K.I., Pavlovic M.G., Grgur B.N., Dimitrov A.T., Hadzi Jordanov S.: Electrodeposition of silver from nitrate solution: Part II. Mechanism of the effect of phosphate ions. Journal of Applied Electrochemisty, 28 (1998), 797–801

Papanastasiou G., Jannakoudakis D., Amblard J., Froment M.: Influence of tartaric acid on the electrodeposition of silver from aqueous AgNO3 solutions. Journal of Applied Electrochemistry, 15 (1985), 71–76

Zarkadas G.M., Stergiou A., Papanastasiou G.: Influence of tartaric acid on the electrocrystallization of silver from binary water + dioxane AgNO3 solutions. Journal of Applied Electrochemistry, 31 (2001), 1251–1259

The UPAC stability constants database, Academic Software and IUMAC, 1992–2000

Downloads

Published

2019-05-23

Issue

Section

Articles

How to Cite

ELECTRODEPOSITION OF SILVER FROM NITRATE-TARTRATE SOLUTIONS. (2019). Metallurgy and Foundry Engineering, 44(2), 81. https://doi.org/10.7494/mafe.2018.44.2.81