NUMERICAL MODEL FOR DENDRITE GROWTH - AN APPLICATION OF THE RANK CONTROLLED DIFFERENTIAL QUADRATURE METHOD
DOI:
https://doi.org/10.7494/mafe.2012.38.1.55Keywords:
numerical modelling, rank controlled differential quadrature, dendrite growth, moving grid problem, crystallizationAbstract
Rank Controlled Differential Quadrature (RCDQ) is an innovative method for numerical approximation of problems described by Partial Differential Equations (PDEs). In this paper the authors apply the RCDQ for the numerical simulation of a simplified model for dendrite growth during Al-Ti alloy crystallization. The authors put most concern on building an accurate numerical model for this phenomenon. In the simplified model the symmetry and flux on boundary condition appears. Additionally, dendrite tip growth into adjacent liquid change the computation domain size, what indicates a need for node coordinate recalculation during each new time step. The authors analyze the results of numerical modelling of alloying element concentration and dendrite growth rate. The modelling results shows that the RCDQ method can be used for modelling problems with moving grid and that the method approximation proposed by the authors is proper.
Downloads
References
Piwowarski G, Krajewski W.K., Lelito J:. Optimization of casting techmology of the pressure die cast AZ91D Mg-based alloy, Metallurgy and Foundry Engineering, 36 (2010) 2, 105-111
Szucki M., Suchy J.S., Żak R, Lelito J., Gracz B. Extended free surface flow model based on the lattice Boltzman approach, Metallurgy and Foundry Engineering, 36 (2010) 2, 113-121
Gracz B., Lelito J., Krajewski W.K., Suchy J.S., Szucki M. Statistical analysis of SiC addition on heterogeneous nucleation of a-Mg primary phase in the AZ91/SiC composite, Metallurgy and Foundry Engineering, 36 (2010) 2, 123-130
Żak P.L., Lelito J., Krajewski W.K., Suchy J.S., Gracz B., Szucki M. Model of dendrite growth in metallic alloys, Metallurgy and Foundry Engineering, 36 (2010) 2, 131-135
Dahle A.K., Arnberg L. On the assumption of an additive effect of solute elements in dendrite growth, Materials Science and Engineering, A225 (1997), 38-46
Maxwell ., Hellawell A.: A simple model for refinement during solidification, Acta Metallurgica, 23 (1975), 229-237
Rappaz M., Thevoz P.H.: Solute diffusion model for equiaxed dendritic growth, Acta Materialia, 35 (1987), 1487-1497
Kapturkiewicz W., Fras E., Burbelko A.: Computer simulation of the austenitizing process in cast iron with pearlitic matrix, Materials Science and Engineering A., 19 (2005), 1653-1659
Bellman R.E., Casti J.: Differential quadrature and long-term integration, J. Math. Anal. Apply, 34 (1971), 235-238
Bellman R.E., Kashef B.G., Casti J.: Differential quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations, Journal of Computational Physics, 10 (1972), 40-52
Quan J.R., Chang C.T.: New insights in solving distributed system equations by the quadrature methods - I, Comput. Chem. Engrg., 13 (1989), 779-788
Quan J.R., Chang C.T.: New insights in solving distributed system equations by the quadrature methods - II, Comput. Chem. Engrg., 13 (1989), 1017-1024
Shu C, Chew Y.T.: On the equivalence of generalized differential quadrature and highest order finite difference scheme, Computer methods in applied mechanics and engineering, 155 (1998), 249-260
Żak PL.: Differential Quadrature method application to computer simulation of heat transfer and solidification processes [in Polish], AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków (2012) PhD thesis [in press]
Vertesi P.: Optimal Lebesgue constants for Lagrange interpolation, SIAM Journal on Numerical Analysis, 27 (1990), 1322-1331
Faber G. Uber die interpolatorische Darstellung stetiger Funktionen, Jahresber der Deutschen Math., 23 (1914), 192-210
Żak P., Lelito J., Suchy J.S., Krajewski W.K.: Improving the heat transfer numerical solution accuracy with application of Rank Controlled Differential Quadrature Method [Poprawa dokładności przybliżonego rozwiązania problemu transportu ciepła poprzez zastosowanie metody kwadratur różniczkowych sterowanego rzędu] (in Polish), Kraków: Komitet Metalurgii PAN, (2010), 278-285
Burden M.H., Hunt J.D.: Cellular and dendritic growth II, Journal of Crystal Growth, 22 (1974), 109-116
Greer A.L., Bunn A.M., Tronche A., Evans P.V., Bristow D.J.: Modelling of inaculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B, Acta Materialia, 48 (2000), 2823-2835
Brandes E.A. (ed.) Smithless Metals Reference Book, 6th edition. London: Butterworths, (1983)
Kurz W., Fisher D. Fundamentals of Solidification, 3rd edn. Laussane, Switzerland: Trans Tech. Publications, (1992)
Massalski T.B. (ed.): Binary Alloy Phase Diagrams, 2nd edn.: ASM International Materials Park, (1990)
Quested T.E., Greer A.L.: Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification, Acta Materialia, 53 (2005), 4643-4653