NUMERICAL MODEL FOR DENDRITE GROWTH - AN APPLICATION OF THE RANK CONTROLLED DIFFERENTIAL QUADRATURE METHOD

Authors

  • Paweł Leszek Żak AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
  • Józef Szczepan Suchy AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland

DOI:

https://doi.org/10.7494/mafe.2012.38.1.55

Keywords:

numerical modelling, rank controlled differential quadrature, dendrite growth, moving grid problem, crystallization

Abstract

Rank Controlled Differential Quadrature (RCDQ) is an innovative method for numerical approximation of problems described by Partial Differential Equations (PDEs). In this paper the authors apply the RCDQ for the numerical simulation of a simplified model for dendrite growth during Al-Ti alloy crystallization. The authors put most concern on building an accurate numerical model for this phenomenon. In the simplified model the symmetry and flux on boundary condition appears. Additionally, dendrite tip growth into adjacent liquid change the computation domain size, what indicates a need for node coordinate recalculation during each new time step. The authors analyze the results of numerical modelling of alloying element concentration and dendrite growth rate. The modelling results shows that the RCDQ method can be used for modelling problems with moving grid and that the method approximation proposed by the authors is proper.

Downloads

Download data is not yet available.

References

Piwowarski G, Krajewski W.K., Lelito J:. Optimization of casting techmology of the pressure die cast AZ91D Mg-based alloy, Metallurgy and Foundry Engineering, 36 (2010) 2, 105-111

Szucki M., Suchy J.S., Żak R, Lelito J., Gracz B. Extended free surface flow model based on the lattice Boltzman approach, Metallurgy and Foundry Engineering, 36 (2010) 2, 113-121

Gracz B., Lelito J., Krajewski W.K., Suchy J.S., Szucki M. Statistical analysis of SiC addition on heterogeneous nucleation of a-Mg primary phase in the AZ91/SiC composite, Metallurgy and Foundry Engineering, 36 (2010) 2, 123-130

Żak P.L., Lelito J., Krajewski W.K., Suchy J.S., Gracz B., Szucki M. Model of dendrite growth in metallic alloys, Metallurgy and Foundry Engineering, 36 (2010) 2, 131-135

Dahle A.K., Arnberg L. On the assumption of an additive effect of solute elements in dendrite growth, Materials Science and Engineering, A225 (1997), 38-46

Maxwell ., Hellawell A.: A simple model for refinement during solidification, Acta Metallurgica, 23 (1975), 229-237

Rappaz M., Thevoz P.H.: Solute diffusion model for equiaxed dendritic growth, Acta Materialia, 35 (1987), 1487-1497

Kapturkiewicz W., Fras E., Burbelko A.: Computer simulation of the austenitizing process in cast iron with pearlitic matrix, Materials Science and Engineering A., 19 (2005), 1653-1659

Bellman R.E., Casti J.: Differential quadrature and long-term integration, J. Math. Anal. Apply, 34 (1971), 235-238

Bellman R.E., Kashef B.G., Casti J.: Differential quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations, Journal of Computational Physics, 10 (1972), 40-52

Quan J.R., Chang C.T.: New insights in solving distributed system equations by the quadrature methods - I, Comput. Chem. Engrg., 13 (1989), 779-788

Quan J.R., Chang C.T.: New insights in solving distributed system equations by the quadrature methods - II, Comput. Chem. Engrg., 13 (1989), 1017-1024

Shu C, Chew Y.T.: On the equivalence of generalized differential quadrature and highest order finite difference scheme, Computer methods in applied mechanics and engineering, 155 (1998), 249-260

Żak PL.: Differential Quadrature method application to computer simulation of heat transfer and solidification processes [in Polish], AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków (2012) PhD thesis [in press]

Vertesi P.: Optimal Lebesgue constants for Lagrange interpolation, SIAM Journal on Numerical Analysis, 27 (1990), 1322-1331

Faber G. Uber die interpolatorische Darstellung stetiger Funktionen, Jahresber der Deutschen Math., 23 (1914), 192-210

Żak P., Lelito J., Suchy J.S., Krajewski W.K.: Improving the heat transfer numerical solution accuracy with application of Rank Controlled Differential Quadrature Method [Poprawa dokładności przybliżonego rozwiązania problemu transportu ciepła poprzez zastosowanie metody kwadratur różniczkowych sterowanego rzędu] (in Polish), Kraków: Komitet Metalurgii PAN, (2010), 278-285

Burden M.H., Hunt J.D.: Cellular and dendritic growth II, Journal of Crystal Growth, 22 (1974), 109-116

Greer A.L., Bunn A.M., Tronche A., Evans P.V., Bristow D.J.: Modelling of inaculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B, Acta Materialia, 48 (2000), 2823-2835

Brandes E.A. (ed.) Smithless Metals Reference Book, 6th edition. London: Butterworths, (1983)

Kurz W., Fisher D. Fundamentals of Solidification, 3rd edn. Laussane, Switzerland: Trans Tech. Publications, (1992)

Massalski T.B. (ed.): Binary Alloy Phase Diagrams, 2nd edn.: ASM International Materials Park, (1990)

Quested T.E., Greer A.L.: Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification, Acta Materialia, 53 (2005), 4643-4653

Downloads

Published

2012-06-30

Issue

Section

Articles

How to Cite

NUMERICAL MODEL FOR DENDRITE GROWTH - AN APPLICATION OF THE RANK CONTROLLED DIFFERENTIAL QUADRATURE METHOD. (2012). Metallurgy and Foundry Engineering, 38(1), 55. https://doi.org/10.7494/mafe.2012.38.1.55