ASSESSMENT OF A LONG-TERM AND SHORT-TERM PROCESS CAPABILITY IN THE APPROACH OF ANALYSIS OF VARIANCE (ANOVA)
DOI:
https://doi.org/10.7494/mafe.2009.35.2.111Keywords:
dispersed microstructure, simulation, stereology, random number generationAbstract
Stereological description of dispersed microstructure is not an easy problem and is constantly a subject of research [1, 2]. From the practical point of view, the stereological description of this type of microstructures is essential in analyses of such processes as coarsening, spheroidization or in research of relationship between the microstructure and mechanical properties (e.g. bearing steel). The method of computer simulation is a very comfortable and effective way to test properties of stereological parameters of a microstructure. The computer model of a dispersed microstructure presented in the work is based on the following assumptions: (1) particles of dispersed phase are spheres randomly distributed in space; the input data are: number of spheres in unit volume Nv, volume fraction of spheres Vv and distribution of sphere diameters in space (through the probability density function f(D)), (2) the system of spheres is being cut by the cutting planes. As a result of the simulation we obtain the distributions of flat sections' diameters. The correctness of the model performance has been verified considering two cases relating to which we know analytical relations between distribution of spheres in space and distributions of flat sections' diameters: (1) the simulated structure consists of spheres of equal size, (2) spheres are subject to the Rayleigh distribution.
Downloads
References
Takahashi J., Suito H. : Effect of omitting small sectioned particles with limited cross - sectional area on characterisation of secondary phase particles, Materials Science and Technology, January (2002) 103-110
Takahashi J., Suito H.: Evaluation of the accuracy of the three - dimensional size distribution estimated from the Schwarz - Sałtykov, Metallurgical and Materials Transactions, 34A (2003) 171-181
Głowacz E., Czarski A.: Scheil-Schwartz-Saltykov method in the matrix depiction, Inżynieria Materiałowa, 29 (2008) 4, 418-420
Weibel E.R.: Stereological methods, vol. 2, Academic Press, London, 1980
Adrian H, Kędzierski Z., Kusiński K.: Analiza numeryczna sferoidalnych elementów struktury symulowanej komputerowo, I Konferencja „Stereologia w badaniach materiałoznawczych”, Kraków-Wisła, 1983, Referaty str. 56-67
Maliński M., Cwajna J., Maciejny A.: Parametry płaskiej budowy stopu dla monodyspersyjnego układu kul w przestrzeni, I Konferencja „Stereologia w badaniach materiałoznawczych”, Kraków-Wisła, 1983, Referaty str. 21-29
Ryś J.: Stereologia materiałów, FOTOBIT - DESIGN, Kraków, 1995
DeHoff R.T., Rhines F.N.: Quantitative Microscopy, McGraw - Hill Book Co., New York, 1968
Underwood E.E.: Quantitative Stereology, Addison - Wesely Reading, 1970
Ohser J., Mucklich F.: Statistical analysis of microstructures in materials science, John Wiley & Sons Ltd., New York, 2000
Gentle J.E.: Random Number Generation and Monte Carlo Methods, Second Edition. Springer, New York, 2003
Wieczorkowski R., Zieliński R.: Komputerowe generatory liczb losowych, WNT, Warszawa, 1997
Snopkowski R.: Symulacja Stochastyczna, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków, 2007
Lahey/Fujitsu Fortran 95 User's Guide, Revision B.: 1995-1999 Lahey Computer Systems, Inc.
Kok L.P. : 100 Problems of my Wife and their Solution in Theoretical Stereology, Coulomb Press Leyden, Leiden, 1990
Hilliard J.E., Lawson R.L. : Stereology and Stochastic Geometry, Kluwer Academic Publishers, Dordrecht/ Boston/London, 2003
Devore J.L.: Probability and Statistics for Engineering and the Sciences, Fifth Edition. Duxbury Thomson Learning, Duxbury, California, 2000
Ryś J., Wiencek K.: Koagulacja faz w stopach, Wyd. Śląsk, Katowice, 1979