NUMERICAL MODELLING OF EXTRUSION PROCESS IN SUPERPLASTIC FLOW RANGE
DOI:
https://doi.org/10.7494/mafe.2006.32.1.41Keywords:
superplasticity, forward extrusion, backward extrusion, strain rateAbstract
The results of numerical modeling of direct and indirect extrusion process of a model alloy of high strain-rate sensitivity at room temperature, Sn38Pb, are presented. The studies were carried out for three values of die angle, three temperatures, four ram speed values, two values of extrusion coefficient and two values of friction factor. Effect of extrusion process parameters on distribution of effective strain, effective strain rate in extruded bar and extrusion load was estimated.Downloads
References
Grabski M.: Nadplastyczność strukturalna metali. Śląsk, 1973
GrzesiakJ., SinczakJ., Rusz S.: Structural superplasticity of alloys at increased strain rate. Metallurgy and Foundry Engineering, 26 (2000) 2, 113-120
Lange K.: Handbook of Metal Forming. McGraw-Hill Book Copr., New York, 1985
SinczakJ. (red): Procesy przeróbki plastycznej. Akapit, Kraków, 2003
SinczakJ., KusiakJ., Łapkowski W., Okoń R.: The influence of deformation conditions on the flow of strain rate sensitive materials. Journal of Materials Processing Technology, 34 (1992), 219-224
Stefańska-Kądziela M., Majta J., Muszka K.: Wpływ prędkości odkształcenia na umocnienie stali niskowęglowych i mikrostopowych. Mat. konf. FiMMPOP Warszawa 2005, PW MECHANIKA nr 207
Szczepanik S., Piątkowska K., Franzke M. Modelowanie numeryczne i fizyczne wyciskania współbieżnego. Mat. konf. FiMMPOP Warszawa 2005, PW MECHANIKA nr 207, 139-144
LapovokR.Ye., Barnett M.R., Davies C.H.J.: Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation. Journal of Materials Processing Technology, 146 (2004), 408-414
Xing H.L., Wang C.W., Zhang K.F., Wang Z.R.: Recent development in the mechanics of superplasticity and its applications. Journal of Materials Processing Technology, 151 (2004), 196-202