FL-MEC: FEDERATED LEARNING FOR NETWORK TRAFFIC CLASSIFICATION ON THE NETWORK EDGE

Authors

  • Patryk Paszko Patryk Paszko ScData, Krakow, Poland
  • Marek Konieczny AGH University of Krakow
  • Sławomir Zieliński AGH University of Krakow https://orcid.org/0000-0002-0824-2608
  • Bartosz Kwolek AGH University of Krakow

DOI:

https://doi.org/10.7494/csci.2025.26.4.7196

Abstract

Nowadays, two technological trends, Federated Learning (FL) and Edge Computing (EC), are becoming more and more important and influential. FL is a distributed machine learning strategy that allows learning on distributed data. It primarily allows performing learning operations close to the user, where we can gather data. This approach lies in the EC domain, where the main goal is to move computation closer to the end user (e.g., from the centralized cloud). In our work, we apply the FL and EC in the context of network flow classification. We achieved an accuracy of 0.957 with the FL model, compared to 0.924 for the best local model. We achieved these results thanks to the federated averaging performed on neural network layers. To verify our approach, we executed all our experiments on a virtualized environment that emulates existing mid-scale EC network infrastructure, including limitations related to resource constraints on edge nodes.

Downloads

Download data is not yet available.

References

[1] Ahmed M., Naser Mahmood A., Hu J.: A survey of network anomaly detection techniques. In: Journal of Network and Computer Applications, vol. 60, pp. 19–31, 2016. ISSN 1084-8045. URL http://dx.doi.org/10.1016/j.jnca.2015.11.016.

[2] Anaissi A., Suleiman B., Alyassine W.: Personalised federated learning framework for damage detection in structural health monitoring. In: Journal of Civil Structural Health Monitoring, vol. 13, pp. 295 – 308, 2022. URL http://dx.doi.org/10.1007/s13349-022-00615-y.

[3] Atanasov I., Pencheva E., Nametkov A., Trifonov V.: On functionality of policy control at the network edge. In: International Journal on Information Technologies and Security, vol. 3(11), pp. 3–24, 2019.

[4] Beutel D.J., Topal T., Mathur A., Qiu X., Fernandez-Marques J., Gao Y., Sani L., Li K.H., Parcollet T., de Gusm ̃ao P.P.B., et al.: Flower: A friendly federated learning research framework. In: arXiv preprint arXiv:2007.14390, 2020.

[5] Bonawitz K., Eichner H., Grieskamp W., Huba D., Ingerman A., Ivanov V.,Kiddon C., Koneˇcn`y J., Mazzocchi S., McMahan B., et al.: Towards Federated Learning at Scale: System Design. In: Proceedings of Machine Learning and Systems, vol. 1, pp. 374–388, 2019.

[6] Czekierda L., Malawski F., Stra ́s R., Zieli ́nski K., Zieli ́nski S.: Leveraging cloud environment flexibility to smoothen the transition to remote teaching during COVID-19 pandemic–a case study. In: Bulletin of the Polish Academy of Sciences Technical Sciences, pp. e137934–e137934, 2021.

[7] Dandi Y., Koloskova A., Jaggi M., Stich S.U.: Data-heterogeneity-aware Mixing for Decentralized Learning, 2022. URL http://dx.doi.org/10.48550/ARXIV.2204.06477.

[8] Das D., Sahoo L., Datta S.: A survey on recommendation system. In: International Journal of Computer Applications, vol. 160(7), 2017.

[9] Dong J., Wang L., Fang Z., Sun G., Xu S., Wang X., Zhu Q.: Federated ClassIncremental Learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10154–10163. 2022. URL http://dx.doi.org10.1109/CVPR52688.2022.00992.

[10] Fan Z., Liu R.: Investigation of machine learning based network traffic classification. In: 2017 International Symposium on Wireless Communication Systems (ISWCS), pp. 1–6. 2017. URL http://dx.doi.org/10.1109/ISWCS.2017.8108090.

[11] Farnia F., Ozdaglar A.E.: Train simultaneously, generalize better: Stability of gradient-based minimax learners. In: CoRR, vol. abs/2010.12561, 2020. URL https://arxiv.org/abs/2010.12561.

[12] Gandia R.L., Zieli ́nski S., Konieczny M.: Model-based approach to automated provisioning of collaborative educational services. In: International Conference on Computational Science, pp. 640–653. Springer, 2021.

[13] Guo Z., Xu Y., Yin W., Jin R., Yang T.: A Novel Convergence Analysis for Algorithms of the Adam Family and Beyond, 2021. URL http://dx.doi.org/10.48550/ARXIV.2104.14840.

[14] Hoi S., Sahoo D., Lu J., Zhao P.: Online Learning: A Comprehensive Survey. In:Neurocomputing, vol. 459, 2018. URL http://dx.doi.org/10.1016/j.neucom.2021.04.112.

[15] Imteaj A., Thakker U., Wang S., Li J., Amini M.H.: A Survey on Federated Learning for Resource-Constrained IoT Devices. In: IEEE Internet of Things Journal, vol. PP, pp. 1–1, 2021. URL http://dx.doi.org/10.1109/JIOT.2021.3095077.

[16] Lei Y., Yang Z., Yang T., Ying Y.: Stability and Generalization of Stochastic Gradient Methods for Minimax Problems. In: CoRR, vol. abs/2105.03793, 2021. URL https://arxiv.org/abs/2105.03793.

[17] Li T., Sahu A.K., Zaheer M., Sanjabi M., Talwalkar A., Smith V.: Federated Optimization in Heterogeneous Networks. In: I. Dhillon, D. Papailiopoulos, V. Sze, eds., Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450. 2020. URL https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf.

[18] Liu B., Yan B., Zhou Y., Yang Y., Zhang Y.: Experiments of Federated Learning for COVID-19 Chest X-ray Images, 2020.

[19] Liu Y., Peng J., Kang J., Iliyasu A.M., Niyato D., Abd El-Latif A.A.: A secure federated learning framework for 5G networks. In: IEEE Wireless Communications, vol. 27(4), pp. 24–31, 2020.

[20] Luo C., He X., Zhan J., Wang L., Gao W., Dai J.: Comparison and benchmarking of ai models and frameworks on mobile devices. In: arXiv preprint arXiv:2005.05085, 2020.

[21] McInnes L., Healy J., Saul N., Großberger L.: UMAP: Uniform Manifold Approximation and Projection. In: Journal of Open Source Software, vol. 3(29), p.861, 2018. URL http://dx.doi.org/10.21105/joss.00861.

[22] McMahan B., Moore E., Ramage D., Hampson S., Arcas B.A.y.: CommunicationEfficient Learning of Deep Networks from Decentralized Data. In: A. Singh, J. Zhu, eds., Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 54, pp. 1273– 1282. PMLR, 2017. URL https://proceedings.mlr.press/v54/mcmahan17a.html.

[23] McMahan H.B., Moore E., Ramage D., y Arcas B.A.: Federated Learning of Deep Networks using Model Averaging. In: CoRR, vol. abs/1602.05629, 2016. URL http://arxiv.org/abs/1602.05629.

[24] Mendez Mena D., Papapanagiotou I., Yang B.: Internet of things: Survey on security. In: Information Security Journal: A Global Perspective, vol. 27(3), pp. 162–182, 2018.

[25] Mishra S., Sarkar U., Taraphder S., Datta S., Swain D., Saikhom R., Panda S., Laishram M.: Principal Component Analysis. In: International Journal of Livestock Research, p. 1, 2017. URL http://dx.doi.org/10.5455/ijlr.20170415115235.

[26] Mohseni S., Pitale M., Singh V., Wang Z.: Practical solutions for machine learning safety in autonomous vehicles. In: arXiv preprint arXiv:1912.09630, 2019.

[27] Montero R.S., Rojas E., Carrillo A.A., Llorente I.M.: Extending the Cloud to the Network Edge. In: Computer, vol. 50(4), pp. 91–95, 2017.

[28] Murshed M.G.S., Murphy C., Hou D., Khan N., Ananthanarayanan G., Hussain F.: Machine Learning at the Network Edge: A Survey. In: ACM Comput. Surv., vol. 54(8), 2021. ISSN 0360-0300. URL http://dx.doi.org/10.1145/3469029.

[29] Namdev N., Agrawal S., Silkari S.: Recent Advancement in Machine Learning Based Internet Traffic Classification. In: Procedia Computer Science, vol. 60, pp. 784–791, 2015. ISSN 1877-0509. URL http://dx.doi.org/10.1016/j.procs.2015.08.238.

[30] Papernot N., McDaniel P., Sinha A., Wellman M.P.: SoK: Security and Privacy in Machine Learning. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 399–414. 2018. URL http://dx.doi.org/10.1109/EuroSP.2018.00035.

[31] Peuster M., Karl H., van Rossem S.: MeDICINE: Rapid prototyping of production-ready network services in multi-PoP environments. In: 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 148–153. 2016. URL http://dx.doi.org/10.1109/NFV-SDN.2016.7919490.

[32] Rafique W., Qi L., Yaqoob I., Imran M., Rasool R., Dou W., Rafiq W.: Complementing IoT Services Through Software Defined Networking and Edge Computing: A Comprehensive Survey. In: IEEE Communications Surveys & Tutorials, vol. PP, pp. 1–1, 2020. URL http://dx.doi.org/10.1109/COMST.2020.2997475.

[33] Ring M., Wunderlich S., Scheuring D., Landes D., Hotho A.: A survey of networkbased intrusion detection data sets. In: Computers & Security, vol. 86, pp. 147– 167, 2019. ISSN 0167-4048. URL http://dx.doi.org/10.1016/j.cose.2019.06.005.

[34] Sagi O., Rokach L.: Ensemble learning: A survey. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8(4), p. e1249, 2018.

[35] Said S., Ihab R., Hesham O., Tabl I.A., Maged N., Youssef S., Elagamy M.: AIOT-Arch: Furthering Artificial Intelligence in Big Data IoT Applications. In: IOP Conference Series: Materials Science and Engineering, vol. 1051(1), p. 012008, 2021. URL http://dx.doi.org/10.1088/1757-899X/1051/1/012008.

[36] Samie F., Bauer L., Henkel J.: Hierarchical Classification for Constrained IoT Devices: A Case Study on Human Activity Recognition. In: IEEE Internet of Things Journal, vol. PP, 2020. URL http://dx.doi.org/10.1109/JIOT.2020.2989053.

[37] Sharma A., Marchang N.: A review on client-server attacks and defenses in federated learning. In: Computers & Security, p. 103801, 2024.

[38] Shi W., Dustdar S.: The Promise of Edge Computing. In: Computer, vol. 49(5), pp. 78–81, 2016. URL http://dx.doi.org/10.1109/MC.2016.145.

[39] Sun T., Li D., Wang B.: Decentralized Federated Averaging. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45(4), pp. 4289–4301, 2023. URL http://dx.doi.org/10.1109/TPAMI.2022.3196503.

[40] Xia G., Chen J., Yu C., Ma J.: Poisoning attacks in federated learning: A survey. In: Ieee Access, vol. 11, pp. 10708–10722, 2023.

[41] Xu G., Kong D.l., Zhang K., Xu S., Cao Y., Mao Y., Duan J., Kang J., Chen X.B.: A model value transfer incentive mechanism for federated learning with smart contracts in aiot. In: IEEE Internet of Things Journal, 2024.

[42] Yang Q., Liu Y., Chen T., Tong Y.: Federated Machine Learning: Concept and Applications. In: CoRR, vol. abs/1902.04885, 2019. URL http://arxiv.org/abs/1902.04885.

[43] Yu D., Deng L.: Automatic speech recognition, vol. 1. Springer, 2016.

[44] Zieli ́nski K., Czekierda L., Malawski F., Stra ́s R., Zieli ́nski S.: Recognizing value of educational collaboration between high schools and universities facilitated by modern ICT. In: Journal of Computer Assisted Learning, vol. 33(6), pp. 633–648, 2017.

[45] Zieli ́nska J.: Malopolska Educational Cloud: an innovative educational project for able-bodied and disabled users. In: Lubelski Rocznik Pedagogiczny, vol. 40, pp. 23–36, 2021. URL http://dx.doi.org/10.17951/lrp.2021.40.2.23-36.

[46] Zygmunt M., Konieczny M., Zielinski S.: Accuracy of statistical machine learning methods in identifying client behavior patterns at network edge. In: 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), pp. 575–579. 2019. URL http://dx.doi.org/10.1109/TSP.2019.8768885

Downloads

Published

2025-12-28

Issue

Section

Articles

How to Cite

Paszko, P., Konieczny, M., Zieliński, S. ., & Kwolek, B. (2025). FL-MEC: FEDERATED LEARNING FOR NETWORK TRAFFIC CLASSIFICATION ON THE NETWORK EDGE. Computer Science, 26(4). https://doi.org/10.7494/csci.2025.26.4.7196