CHARACTERISTIC SKY BACKGROUND FEATURES AROUND GALAXY MERGERS

Authors

  • Luis Eduardo Suelves

DOI:

https://doi.org/10.7494/csci.2025.26.SI.7072

Abstract

In the context of finding galaxy merger in large-scale surveys, we applied Machine
Learning algorithms that, instead of using the images as it is the current
standard, made used of flux measurements. Training multiple NNs using a
class-balanced dataset of mergers and non-mergers Sloan Digital Sky Survey,
we found that the sky background error parameters could provide a validation
92.64 ± 0.15 % accuracy of and a training accuracy of 92.36 ± 0.21 %.
Moreover, analysing the NN identifications led us to find that a simple decision
diagram using the sky error for two flux filters is enough to get a 91.59 % accuracy.
By understanding how the galaxies vary along the diagram, and trying to
parametrize the methodology in the deeper images of the Hyper Suprime-Cam,
we are currently trying to define and generalize this sky error-based methodology.

Downloads

Download data is not yet available.

References

References

[1] Abraham R.G., van den Bergh S., Glazebrook K., Ellis R.S., Santiago B.X.,

Surma P., Griffiths R.E.: The Morphologies of Distant Galaxies. II. Classifica-

tions from the Hubble Space Telescope Medium Deep Survey, The Astrophysical

Journals, vol. 107, p. 1, 1996. doi: 10.1086/192352.

[2] Abraham R.G., van den Bergh S., Nair P.: A New Approach to Galaxy Mor-

phology. I. Analysis of the Sloan Digital Sky Survey Early Data Release, The

Astrophysical Journal, vol. 588(1), pp. 218–229, 2003. doi: 10.1086/373919.

[3] Ackermann S., Schawinski K., Zhang C., Weigel A.K., Turp M.D.: Using transfer

learning to detect galaxy mergers, Monthly Notices of the Royal Astronomical

Society, vol. 479(1), pp. 415–425, 2018. doi: 10.1093/mnras/sty1398.

[4] Adelman-McCarthy J.K., Agüeros M.A., Allam S.S., Allende Prieto C., Ander-

son K.S., Anderson S.F., Annis J., et al.: The Sixth Data Release of the Sloan

Digital Sky Survey, The Astrophysical Journals, vol. 175(2), pp. 297–313, 2008.

doi: 10.1086/524984.

5] Barton E.J., Geller M.J., Kenyon S.J.: Tidally Triggered Star Formation in Close

Pairs of Galaxies, The Astrophysical Journal, vol. 530(2), pp. 660–679, 2000.

doi: 10.1086/308392.

[6] Bershady M.A., Jangren A., Conselice C.J.: Structural and Photometric Clas-

sification of Galaxies. I. Calibration Based on a Nearby Galaxy Sample, The

Astronomical Journal, vol. 119(6), pp. 2645–2663, 2000. doi: 10.1086/301386.

[7] Bottrell C., Hani M.H., Teimoorinia H., Ellison S.L., Moreno J., Torrey P., Hay-

ward C.C., et al.: Deep learning predictions of galaxy merger stage and the

importance of observational realism, Monthly Notices of the Royal Astronomical

Society, vol. 490(4), pp. 5390–5413, 2019. doi: 10.1093/mnras/stz2934.

[8] Conselice C.J.: The Relationship between Stellar Light Distributions of Galaxies

and Their Formation Histories, The Astrophysical Journals, vol. 147(1), pp. 1–28,

2003. doi: 10.1086/375001.

[9] Conselice C.J.: Early and Rapid Merging as a Formation Mechanism of Massive

Galaxies: Empirical Constraints, The Astrophysical Journal, vol. 638(2), pp. 686–

702, 2006. doi: 10.1086/499067.

[10] Conselice C.J., Bershady M.A., Jangren A.: The Asymmetry of Galaxies: Physi-

cal Morphology for Nearby and High-Redshift Galaxies, The Astrophysical Jour-

nal, vol. 529(2), pp. 886–910, 2000. doi: 10.1086/308300.

[11] Darg D.W., Kaviraj S., Lintott C.J., Schawinski K., Sarzi M., Bamford S., Silk J.,

et al.: Galaxy Zoo: the properties of merging galaxies in the nearby Universe

– local environments, colours, masses, star formation rates and AGN activity,

Monthly Notices of the Royal Astronomical Society, vol. 401(3), pp. 1552–1563,

2010. doi: 10.1111/j.1365-2966.2009.15786.x.

[12] Darg D.W., Kaviraj S., Lintott C.J., Schawinski K., Sarzi M., Bamford S., Silk J.,

et al.: Galaxy Zoo: the fraction of merging galaxies in the SDSS and their

morphologies, Monthly Notices of the Royal Astronomical Society, vol. 401(2),

pp. 1043–1056, 2010. doi: 10.1111/j.1365-2966.2009.15686.x.

[13] De Propris R., Liske J., Driver S.P., Allen P.D., Cross N.J.G.: The Millennium

Galaxy Catalogue: Dynamically Close Pairs of Galaxies and the Global Merger

Rate, The Astronomical Journal, vol. 130(4), pp. 1516–1523, 2005. doi: 10.1086/

433169.

[14] Domínguez Sánchez H., Martin G., Damjanov I.e.a.: Identification of tidal fea-

tures in deep optical galaxy images with convolutional neural networks, Monthly

Notices of the Royal Astronomical Society, vol. 521(3), pp. 3861–3872, 2023.

doi: 10.1093/mnras/stad750.

[15] Duncan K., Conselice C.J., Mundy C.e.a.: Observational Constraints on the

Merger History of Galaxies since z ≈ 6: Probabilistic Galaxy Pair Counts

in the CANDELS Fields, The Astrophysical Journal, vol. 876(2), 110, 2019.

doi: 10.3847/1538-4357/ab148a.

[16] Ellison S.L., Patton D.R., Simard L.e.a.: Galaxy Pairs in the Sloan Digital

Sky Survey. I. Star Formation, Active Galactic Nucleus Fraction, and the Mass-

Metallicity Relation, The Astronomical Journal, vol. 135(5), pp. 1877–1899, 2008.

doi: 10.1088/0004-6256/135/5/1877.

[17] Ferreira L., Conselice C.J., Duncan e.a.: Galaxy Merger Rates up to z ∼ 3 Using

a Bayesian Deep Learning Model: A Major-merger Classifier Using IllustrisTNG

Simulation Data, The Astrophysical Journal, vol. 895(2), 115, 2020. doi: 10.3847/

1538-4357/ab8f9b.

[18] Goldberger J., Roweis S., Hinton G., Salakhutdinov R.: Neighbourhood Compo-

nents Analysis. In: Neighbourhood Components Analysis, vol. 17, 2004.

[19] Goto T., Toba Y., Utsumi Y.e.a.: Hyper Suprime-Camera Survey of the Akari

NEP Wide Field, Publication of Korean Astronomical Society, vol. 32(1), pp. 225–

230, 2017. doi: 10.5303/PKAS.2017.32.1.225.

[20] Gunn J.E., Carr M., Rockosi C.e.a.: The Sloan Digital Sky Survey Photo-

metric Camera, The Astronomical Journal, vol. 116(6), pp. 3040–3081, 1998.

doi: 10.1086/300645.

[21] Ivezić Ž., Kahn S.M., Tyson e.a.: LSST: From Science Drivers to Reference Design

and Anticipated Data Products, The Astrophysical Journal, vol. 873(2), 111,

2019. doi: 10.3847/1538-4357/ab042c.

[22] Joseph R.D., Wright G.S.: Recent star formation in interacting galaxies - II.

Super starbursts in merging galaxies., Monthly Notices of the Royal Astronomical

Society, vol. 214, pp. 87–95, 1985. doi: 10.1093/mnras/214.2.87.

[23] Kent S.M.: CCD surface photometry of field galaxies. II. Bulge/disk decompo-

sitions., The Astrophysical Journals, vol. 59, pp. 115–159, 1985. doi: 10.1086/

191066.

[24] Kitzbichler M.G., White S.D.M.: A calibration of the relation between the

abundance of close galaxy pairs and the rate of galaxy mergers, Monthly No-

tices of the Royal Astronomical Society, vol. 391(4), pp. 1489–1498, 2008.

doi: 10.1111/j.1365-2966.2008.13873.x.

[25] Lambas D.G., Tissera P.B., Alonso M.S.e.a.: Galaxy pairs in the 2dF survey

- I. Effects of interactions on star formation in the field, Monthly Notices of

the Royal Astronomical Society, vol. 346(4), pp. 1189–1196, 2003. doi: 10.1111/

j.1365-2966.2003.07179.x.

[26] Le Fèvre O., Abraham R., Lilly e.a.: Hubble Space Telescope imaging of the

CFRS and LDSS redshift surveys - IV. Influence of mergers in the evolution of

faint field galaxies from z~1, Monthly Notices of the Royal Astronomical Society,

vol. 311(3), pp. 565–575, 2000. doi: 10.1046/j.1365-8711.2000.03083.x.

[27] Lin L., Koo D.C., Willmer C.N.A.e.a.: The DEEP2 Galaxy Redshift Survey:

Evolution of Close Galaxy Pairs and Major-Merger Rates up to z ~1.2, The

Astrophysical Journall, vol. 617(1), pp. L9–L12, 2004. doi: 10.1086/427183.

28] Lintott C., Schawinski K., Bamford S.e.a.: Galaxy Zoo 1: data release of mor-

phological classifications for nearly 900 000 galaxies, Monthly Notices of the

Royal Astronomical Society, vol. 410(1), pp. 166–178, 2011. doi: 10.1111/j.1365-

2966.2010.17432.x.

[29] Lotz J.M., Jonsson P., Cox T.J., Primack J.R.: Galaxy merger morphologies and

time-scales from simulations of equal-mass gas-rich disc mergers, Monthly Notices

of the Royal Astronomical Society, vol. 391(3), pp. 1137–1162, 2008. doi: 10.1111/

j.1365-2966.2008.14004.x.

[30] Lotz J.M., Primack J., Madau P.: A New Nonparametric Approach to Galaxy

Morphological Classification, The Astronomical Journal, vol. 128(1), pp. 163–182,

2004. doi: 10.1086/421849.

[31] Lupton R.H., Gunn J.E., Szalay A.S.: A Modified Magnitude System that Pro-

duces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-

Noise Ratio Measurements, The Astronomical Journal, vol. 118(3), pp. 1406–

1410, 1999. doi: 10.1086/301004.

[32] Mahajan S., Drinkwater M.J., Driver S.a.a.: Galaxy And Mass Assembly

(GAMA): blue spheroids within 87 Mpc, Monthly Notices of the Royal Astro-

nomical Society, vol. 475(1), pp. 788–799, 2018. doi: 10.1093/mnras/stx3202.

[33] Margalef-Bentabol B., Wang L., La Marca A.e.a.: Galaxy merger challenge: A

comparison study between machine learning-based detection methods, Astronomy

& Astrophysics, vol. 687, A24, 2024. doi: 10.1051/0004-6361/202348239.

[34] Mihos J.C., Hernquist L.: Gasdynamics and Starbursts in Major Mergers, The

Astrophysical Journal, vol. 464, p. 641, 1996. doi: 10.1086/177353.

[35] Nevin R., Blecha L., Comerford e.a.: Accurate Identification of Galaxy Mergers

with Imaging, The Astrophysical Journal, vol. 872(1), 76, 2019. doi: 10.3847/

1538-4357/aafd34.

[36] Nevin R., Blecha L., Comerford J.e.a.: A declining major merger fraction with

redshift in the local Universe from the largest-yet catalogue of major and minor

mergers in SDSS, Monthly Notices of the Royal Astronomical Society, vol. 522(1),

pp. 1–28, 2023. doi: 10.1093/mnras/stad911.

[37] Oi N., Goto T., Matsuhara H.e.a.: Subaru/HSC deep optical imaging of infrared

sources in the AKARI North Ecliptic Pole-Wide field, Monthly Notices of the

Royal Astronomical Society, vol. 500(4), pp. 5024–5042, 2021. doi: 10.1093/

mnras/staa3080.

[38] Patton D.R., Grant J.K., Simard e.a.: A Hubble Space Telescope Snapshot Sur-

vey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey, The

Astronomical Journal, vol. 130(5), pp. 2043–2057, 2005. doi: 10.1086/491672.

[39] Patton D.R., Pritchet C.J., Carlberg R.G.e.a.: Dynamically Close Galaxy Pairs

and Merger Rate Evolution in the CNOC2 Redshift Survey, The Astrophysical

Journal, vol. 565(1), pp. 208–222, 2002. doi: 10.1086/324543.

[40] Patton D.R., Pritchet C.J., Yee H.K.C., Ellingson E., Carlberg R.G.: Close Pairs

of Field Galaxies in the CNOC1 Redshift Survey, The Astrophysical Journal, vol.

475(1), pp. 29–42, 1997. doi: 10.1086/303535.

[41] Pearson W.J., Rodriguez-Gomez V., Kruk S.e.a.: Determining the time before

or after a galaxy merger event, Astronomy & Astrophysics, vol. 687, A45, 2024.

doi: 10.1051/0004-6361/202449532.

[42] Pearson W.J., Suelves L.E., Ho S.C.C.e.a.: North Ecliptic Pole merging galaxy

catalogue, Astronomy & Astrophysics, vol. 661, A52, 2022. doi: 10.1051/0004-

6361/202141013.

[43] Pearson W.J., Wang L., Alpaslan e.a.: Effect of galaxy mergers on star-formation

rates, Astronomy & Astrophysics, vol. 631, A51, 2019. doi: 10.1051/0004-6361/

201936337.

[44] Pearson W.J., Wang L., Trayford e.a.: Identifying galaxy mergers in observations

and simulations with deep learning, Astronomy & Astrophysics, vol. 626, A49,

2019. doi: 10.1051/0004-6361/201935355.

[45] Rodrigues M., Puech M., Flores H., Hammer F., Pirzkal N.: Testing the hier-

archical assembly of massive galaxies using accurate merger rates out to z 1.5,

Monthly Notices of the Royal Astronomical Society, vol. 475(4), pp. 5133–5143,

2018. doi: 10.1093/mnras/sty098.

[46] Sanders D.B., Mirabel I.F.: Luminous Infrared Galaxies, Annual Review

of Astronomy and Astrophysics, vol. 34, p. 749, 1996. doi: 10.1146 /

annurev.astro.34.1.749.

[47] Sazonova E., Morgan C., Balogh M.e.a.: RMS asymmetry: a robust metric

of galaxy shapes in images with varied depth and resolution, arXiv e-prints,

arXiv:2404.05792, 2024. doi: 10.48550/arXiv.2404.05792.

[48] Snyder G.F., Lotz J., Moody C.e.a.: Diverse structural evolution at z>1 in cosmo-

logically simulated galaxies, Monthly Notices of the Royal Astronomical Society,

vol. 451(4), pp. 4290–4310, 2015. doi: 10.1093/mnras/stv1231.

[49] Sola E., Duc P.A., Richards F.e.a.: Characterization of low surface bright-

ness structures in annotated deep images, Astronomy, vol. 662, A124, 2022.

doi: 10.1051/0004-6361/202142675.

[50] Stoughton C., Lupton R.H., Bernardi M.e.a.: Sloan Digital Sky Survey: Early

Data Release, The Astronomical Journal, vol. 123(1), pp. 485–548, 2002.

doi: 10.1086/324741.

[51] Suelves L.E., Pearson W.J., Pollo A.: Merger identification through photometric

bands, colours, and their errors, Astronomy & Astrophysics, vol. 669, A141, 2023.

doi: 10.1051/0004-6361/202244509.

[52] Takamiya M.: Galaxy Structural Parameters: Star Formation Rate and Evolution

with Redshift, The Astrophysical Journal Supplement Series, vol. 122(1), pp. 109–

150, 1999. doi: 10.1086/313216.

[53] Toomre A., Toomre J.: Galactic Bridges and Tails, The Astrophysical Journal,

vol. 178, pp. 623–666, 1972. doi: 10.1086/151823.

[54] Walmsley M., Ferguson A.M.N., Mann R.G.e.a.: Identification of low surface

brightness tidal features in galaxies using convolutional neural networks, Monthly

Notices of the Royal Astronomical Society, vol. 483(3), pp. 2968–2982, 2019.

doi: 10.1093/mnras/sty3232.

55] Walmsley M., Lintott C., Géron T.e.a.: Galaxy Zoo DECaLS: Detailed visual

morphology measurements from volunteers and deep learning for 314 000 galaxies,

Monthly Notices of the Royal Astronomical Society, vol. 509(3), pp. 3966–3988,

2022. doi: 10.1093/mnras/stab2093.

[56] Wang L., Pearson W.J., Rodriguez-Gomez V.: Towards a consistent framework

of comparing galaxy mergers in observations and simulations, Astronomy & As-

trophysics, vol. 644, A87, 2020. doi: 10.1051/0004-6361/202038084.

[57] White S.D.M., Frenk C.S.: Galaxy Formation through Hierarchical Clustering,

The Astrophysical Journal, vol. 379, p. 52, 1991. doi: 10.1086/170483.

[58] White S.D.M., Rees M.J.: Core condensation in heavy halos: a two-stage theory

for galaxy formation and clustering., Monthly Notices of the Royal Astronomical

Society, vol. 183, pp. 341–358, 1978. doi: 10.1093/mnras/183.3.341.

[59] York D.G., Adelman J., Anderson e.a.: The Sloan Digital Sky Survey: Tech-

nical Summary, The Astronomical Journal, vol. 120(3), pp. 1579–1587, 2000.

doi: 10.1086/301513.

[60] Zalesky L.M.: The Hawaii Two-0 Twenty Square Degree Survey. In: American

Astronomical Society Meeting Abstracts, American Astronomical Society Meeting

Abstracts, vol. 237, 215.05, 2021.

Downloads

Published

2025-07-29

Issue

Section

Articles

How to Cite

Suelves, L. E. (2025). CHARACTERISTIC SKY BACKGROUND FEATURES AROUND GALAXY MERGERS. Computer Science, 26(SI). https://doi.org/10.7494/csci.2025.26.SI.7072