AQMLATOR – AN AUTO QUANTUM MACHINE LEARNING E-PLATFORM

Authors

  • Tomasz Rybotycki Instytut Badań Systemowych PAN
  • Piotr Gawron Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences

DOI:

https://doi.org/10.7494/csci.2025.26.SI.7063

Abstract

A successful Machine Learning (ML) model implementation requires three
main components: training dataset, suitable model architecture and training
procedure. Given dataset and task, finding an appropriate model might be challenging.
AutoML, a branch of ML, focuses on automatic architecture search —
a meta method that aims at removing human from ML system design process.
The success of ML and the development of quantum computing (QC) in recent
years led to a birth of new fascinating field called Quantum Machine Learning
(QML) that, amongst others, incorporates quantum computers into ML models.
In this paper we present AQMLator, an Auto Quantum Machine Learning
platform that aims to automatically propose and train the quantum layers of
an ML model with minimal input from the user. This way, data scientists can
bypass the entry barrier for QC and use QML. AQMLator uses standard ML
libraries, making it easy to introduce into existing ML pipelines.

Downloads

Download data is not yet available.

References

References

[1] Akiba T., Sano S., Yanase T., Ohta T., Koyama M.: Optuna: A Next-

generation Hyperparameter Optimization Framework, 2019. https://arxiv.org/

abs/1907.10902

[2] Altares-López S., García-Ripoll J.J., Ribeiro A.: AutoQML: Quantum Inspired

Kernels by Using Genetic Algorithms for Grayscale Images [Source Code], https:

//codeocean.com/capsule/5670396/tree, 2023. doi: 10.24433/CO.3955535.v1.

[3] Altares-López S., García-Ripoll J.J., Ribeiro A.: AutoQML: Automatic genera-

tion and training of robust quantum-inspired classifiers by using evolutionary al-

gorithms on grayscale images, Expert Systems with Applications, vol. 244, 122984,

2024. doi: 10.1016/j.eswa.2023.122984.

[4] Arute F., Arya K., Babbush R., Bacon D., Bardin J.C., Barends R., Biswas R.,

et al.: Quantum supremacy using a programmable superconducting processor,

Nature, vol. 574(7779), pp. 505–510, 2019.

[5] AutoQML Team: AutoQML Repository, https://github.com/AutoQML, 2023.

Accessed: 2024-09-18.

[6] Benedetti M., Lloyd E., Sack S., Fiorentini M.: Parameterized quantum circuits

as machine learning models, Quantum Science and Technology, vol. 4(4), 043001,

2019. doi: 10.1088/2058-9565/ab4eb5.

[7] Biamonte J., Wittek P., Pancotti N., Rebentrost P., Wiebe N., Lloyd S.: Quan-

tum machine learning, Nature, vol. 549(7671), pp. 195–202, 2017.

[8] Bowles J., Ahmed S., Schuld M.: Better than classical? The subtle art of

benchmarking quantum machine learning models, 2024. https://arxiv.org/abs/

2403.07059.

[9] Cerezo M., Verdon G., Huang H.Y., Cincio L., Coles P.J.: Challenges and op-

portunities in quantum machine learning, Nature Computational Science, vol. 2,

pp. 567–576, 2022. doi: 10.1038/s43588-022-00311-3.

[10] Feral Qubits: QBM4EO: Supervised quantum machine learning system for Earth

land cover understanding., https://feralqubits.github.io/qbm4eo-lp/. Accessed:

2024-09-18.

[11] Gentile A., Flynn B., Knauer S., Wiebe N., Paesani S., Granade C.E., Rarity J.G.,

et al.: Learning models of quantum systems from experiments, Nature Physics,

vol. 17, pp. 837–843, 2021. doi: 10.1038/s41567-021-01201-7.

[12] Guerra E., Wilhelmi F., Miozzo M., Dini P.: The Cost of Training Machine Learn-

ing Models Over Distributed Data Sources, IEEE Open Journal of the Communi-

cations Society, vol. 4, pp. 1111–1126, 2023. doi: 10.1109/OJCOMS.2023.3274394.

[13] Herbst S., Maio V.D., Brandic I.: On Optimizing Hyperparameters for Quantum

Neural Networks, 2024. https://arxiv.org/abs/2403.18579.

[14] Hutter F., Kotthoff L., Vanschoren J. (eds.): Automated Machine Learning,

Springer International Publishing, 2019.

[15] Hutter F., Kotthoff L., Vanschoren J. (eds.): Automated Machine Learning:

Methods, Systems, Challenges, Springer, Cham, 2019. doi: 10.1007/978-3-030-

05318-5.

[16] Klau D., Krause H., Kreplin D., Roth M., Tutschku C., Zöller M.: Auto-

QML – A Framework for Automated Quantum Machine Learning, Technical

Report, 2023. https://www.digital.iao.fraunhofer.de/content/dam/iao/ikt/de/

documents/AutoQML_Framework.pdf.

17] Klau D., Zöller M., Tutschku C.: Bringing Quantum Algorithms to Automated

Machine Learning: A Systematic Review of AutoML Frameworks Regarding Ex-

tensibility for QML Algorithms, 2023. https://arxiv.org/abs/2310.04238.

[18] Koike-Akino T., Wang P., Wang Y.: AutoQML: Automated Quantum Ma-

chine Learning for Wi-Fi Integrated Sensing and Communications, 2022. https:

//arxiv.org/abs/2205.09115.

[19] Kundu A.: Reinforcement learning-assisted quantum architecture search for vari-

ational quantum algorithms, 2024. https://arxiv.org/abs/2402.13754.

[20] Kundu A., Sarkar A., Sadhu A.: KANQAS: Kolmogorov-Arnold Network for

Quantum Architecture Search, 2024. https://arxiv.org/abs/2406.17630.

[21] Lusnig L., Sagingalieva A., Surmach M., Protasevich T., Michiu O., McLough-

lin J., Mansell C., et al.: Hybrid Quantum Image Classification and Feder-

ated Learning for Hepatic Steatosis Diagnosis, Diagnostics, vol. 14(5), 2024.

doi: 10.3390/diagnostics14050558.

[22] Martyniuk D., Jung J., Paschke A.: Quantum Architecture Search: A Survey,

2024. https://arxiv.org/abs/2406.06210.

[23] Moussa C., Patel Y.J., Dunjko V., Bäck T., van Rijn J.N.: Hyperparameter im-

portance and optimization of quantum neural networks across small datasets, Ma-

chine Learning, vol. 113, pp. 1941–1966, 2024. doi: 10.1007/s10994-023-06389-8.

[24] Moussa C., van Rijn J.N., Bäck T., Dunjko V.: Hyperparameter Importance of

Quantum Neural Networks Across Small Datasets. In: P. Pascal, D. Ienco (eds.),

Discovery Science, Lecture Notes in Computer Science, vol. 13601, pp. 32–46,

Springer, Cham, 2022. doi: 10.1007/978-3-031-18840-4_3.

[25] Ostaszewski M., Trenkwalder L.M., Masarczyk W., Scerri E., Dunjko V.: Rein-

forcement learning for optimization of variational quantum circuit architectures,

2021. https://arxiv.org/abs/2103.16089.

[26] Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin Z., et al.:

Automatic differentiation in PyTorch. In: NIPS-W, 2017.

[27] Raschka S.: Model Evaluation, Model Selection, and Algorithm Selection in Ma-

chine Learning, 2020. https://arxiv.org/abs/1811.12808.

[28] Rybotycki T., Gawron P.: AQMLator Documentation. https : / /

aqmlator.readthedocs.io/en/latest/index.html. Accessed: 2024-09-18.

[29] Rybotycki T., Gawron P.: AQMLator PyPi page, https://pypi.org/project/

AQMLator/. Accessed: 2024-09-18.

[30] Shor P.: Algorithms for quantum computation: discrete logarithms and factoring.

In: Proceedings 35th Annual Symposium on Foundations of Computer Science,

pp. 124–134, 1994.

[31] Subasi O.: Toward Automated Quantum Variational Machine Learning, 2023.

https://arxiv.org/abs/2312.01567.

[32] Xanadu Quantum Technologies: PennyLane Documentation, https : / /

docs.pennylane.ai/en/stable/index.html. Accessed: 2024-09-18

Downloads

Published

2025-07-29

Issue

Section

Articles

How to Cite

Rybotycki, T., & Gawron, P. (2025). AQMLATOR – AN AUTO QUANTUM MACHINE LEARNING E-PLATFORM. Computer Science, 26(SI). https://doi.org/10.7494/csci.2025.26.SI.7063