RECONSTRUCTION OF MUON BUNDLES IN KM3NET DETECTORS USING MACHINE LEARNING METHODS

on behalf of the KM3NeT collaboration

Authors

  • Piotr Kalaczyński CAMK PAN, CDSI AGH

DOI:

https://doi.org/10.7494/csci.2025.26.SI.7062

Abstract

The KM3NeT Collaboration is installing the ARCA and ORCA neutrino detectors
at the bottom of the Mediterranean Sea. The focus of ARCA is neutrino
astronomy, while ORCA is optimised for neutrino oscillation studies. Both
detectors are already operational in their intermediate states and collect valuable
data, including the measurements of the muons produced by cosmic ray
interactions in the atmosphere. This work explores the potential of machine
learning models for the reconstruction of muon bundles, which are multi-muon
events. For this, data collected with intermediate detector configurations of
ARCA and ORCA was used in addition to simulated data from the envisaged
final configurations of those detectors. Prediction of the total number of muons
in a bundle as well as their total energy and even the energy of the primary
cosmic ray is presented.

 

Downloads

Download data is not yet available.

References

References

[1] Abdul Halim A., Abreu P., Aglietta M., Allekotte I., Almeida Cheminant K.,

Almela A., Aloisio R., et al.: Constraining models for the origin of ultra-high-

energy cosmic rays with a novel combined analysis of arrival directions, spectrum,

and composition data measured at the Pierre Auger Observatory, Journal of

Cosmology and Astroparticle Physics, vol. 2024(01), 022, 2024. doi: 10.1088/

1475-7516/2024/01/022.

[2] Aiello S., Albert A., Alshamsi M., Garre S.A., Ambrosone A., Ameli F., Andre M.,

et al.: Atmospheric muons measured with the KM3NeT detectors in comparison

with updated numeric predictions, The European Physical Journal C, vol. 84(7),

696, 2024. doi: 10.1140/epjc/s10052-024-13018-8.

[3] Akiba T., Sano S., Yanase T., Ohta T., Koyama M.: Optuna. In: Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, ACM, 2019. doi: 10.1145/3292500.3330701.

[4] Albrecht J., et al.: The Muon Puzzle in cosmic-ray induced air showers and

its connection to the Large Hadron Collider, Astrophysics and Space Science,

vol. 367(3), 27, 2022. doi: 10.1007/s10509-022-04054-5.

[5] Carminati G., Bazzotti M., Biagi S., Cecchini S., Chiarusi T., Margiotta A.,

Sioli M., et al.: MUPAGE: a fast atmospheric MUon GEnerator for neutrino

telescopes based on PArametric formulas, 2009. doi: 10.48550/arXiv.0907.5563.

[6] Chen T., Guestrin C.: XGBoost: A Scalable Tree Boosting System. In: Proceed-

ings of the 22nd ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, pp. 785–794, KDD ’16, ACM, New York, NY, USA, 2016.

doi: 10.1145/2939672.2939785.

[7] Evoli C.: The Cosmic-Ray Energy Spectrum, 2020. doi: 10.5281/zenodo.4396125.

8] Filippini F., Androutsou E., Domi A., Spisso B., Drakopoulou E.: Data recon-

struction and classification with Graph neural networks in KM3NeT/ARCA, PoS,

vol. ICRC2023, p. 1194, 2023. doi: 10.22323/1.444.1194.

[9] Giacomelli G., Margiotta A.: The MACRO Experiment at Gran Sasso. In:

Charles Peck Fest, 2007. doi: 10.48550/arXiv.0707.1691.

[10] Greisen K.: End to the Cosmic-Ray Spectrum?, Physical Review Letters,

vol. 16(17), pp. 748–750, 1966. doi: 10.1103/physrevlett.16.748.

[11] Heck D., Knapp J., Capdevielle J.N., Schatz G., Thouw T.: CORSIKA: A Monte

Carlo code to simulate extensive air showers, 1998.

[12] Hess V.F.: Über Beobachtungen der durchdringenden Strahlung bei sieben

Freiballonfahrten, Phys Z, vol. 13, pp. 1084–1091, 1912.

[13] de Jong M.: Multi-dimensional interpolations in C++, 2019. doi: 10.48550/

arXiv.1907.02597.

[14] Kalaczyński P.: The Measurement and Modelling of Cosmic Ray Muons at

KM3NeT Detectors, Ph.D. thesis, NCBJ, 2024. doi: 10.48550/arXiv.2402.02620.

2402.02620.

[15] Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., et al.:

LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: I. Guyon,

U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Gar-

nett (eds.), Advances in Neural Information Processing Systems, vol. 30, Cur-

ran Associates, Inc., 2017. https://proceedings.neurips.cc/paper/2017/file/

6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

[16] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O.,

Blondel M., et al.: Scikit-learn: Machine Learning in Python, Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.

[17] Scapparone E.: HEMAS: A Monte Carlo code for hadronic, electromagnetic and

TeV muon components in air shower, 1998. doi: 10.48550/arXiv.physics/9902043.

[18] Telescope Array Collaboration: R. U. Abbasi, et al.: Study of muons from ultra-

high energy cosmic ray air showers measured with the Telescope Array experi-

ment, Phys Rev D, vol. 98, 022002, 2018. doi: 10.1103/PhysRevD.98.022002.

[19] The Alpha Magnetic Spectrometer Collaboration: M. Aguilar, et al.: The Al-

pha Magnetic Spectrometer (AMS) on the international space station: Part II –

Results from the first seven years, Physics Reports, vol. 894, pp. 1–116, 2021.

doi: 10.1016/j.physrep.2020.09.003. The Alpha Magnetic Spectrometer (AMS) on

the International Space Station: Part II – Results from the First Seven Years.

[20] The KASCADE Collaboration: W.D. Apel, et al.: KASCADE-Grande measure-

ments of energy spectra for elemental groups of cosmic rays, Astroparticle Physics,

vol. 47, pp. 54–66, 2013. doi: 10.1016/j.astropartphys.2013.06.004.

[21] The KM3NeT Collaboration: S. Adriçn-Martínez, et al.: Letter of intent for

KM3NeT 2.0, Journal of Physics G: Nuclear and Particle Physics, vol. 43(8),

p. 084001, 2016. doi: 10.1088/0954-3899/43/8/084001.

[22] The KM3NeT Collaboration: S. Aiello, et al.: gSeaGen: The KM3NeT GENIE-

based code for neutrino telescopes, Computer Physics Communications, vol. 256,

107477, 2020. doi: https://doi.org/10.1016/j.cpc.2020.107477.

[23] The KM3NeT Collaboration: S. Aiello, et al.: The KM3NeT multi-PMT optical

module, Journal of Instrumentation, vol. 17(07), P07038, 2022. doi: 10.1088/

1748-0221/17/07/P07038.

[24] The PAMELA Collaboration: V. V. Mikhailov, et al.: Galactic Cosmic Ray Elec-

trons and Positrons over a Decade of Observations in the PAMELA Experiment,

Bulletin of the Russian Academy of Sciences, Physics, vol. 83(8), pp. 974–976,

2019. doi: 10.3103/S1062873819080288.

[25] Zatsepin G.T., Kuz’min V.A.: Upper Limit of the Spectrum of Cosmic Rays,

Soviet Journal of Experimental and Theoretical Physics Letters, vol. 4, p. 78,

1966. https://ui.adsabs.harvard.edu/abs/1966JETPL...4...78Z

Downloads

Published

2025-07-29

Issue

Section

Articles

How to Cite

Kalaczyński, P. (2025). RECONSTRUCTION OF MUON BUNDLES IN KM3NET DETECTORS USING MACHINE LEARNING METHODS: on behalf of the KM3NeT collaboration. Computer Science, 26(SI). https://doi.org/10.7494/csci.2025.26.SI.7062