### A Multifunctional Unit For Reverse Conversion and Sign Detection Based on The 5-Moduli Set

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

H. L. Garner, ”The residue number system,” IRE Transaction Electric Computer, vol. 8, no. 2, pp. 140-147, 1959.

P.V.A. Mohan, Residue Number Systems: Theory and Applications, Springer, 2016.

C. H. Chang, A. S. Molahosseini, A. A. E. Zarandi and T. F. Tay, Residue Number Systems: A New Paradigm to Datapath Optimization for Low-Power and High-Performance Digital Signal Processing Applications, IEEE Circuits and Systems Magazine, vol. 15, no. 4, pp. 26-44, 2015.

L. Sousa, S. Antao and P. Martins, śCombining Residue Arithmetic to Design Efficient Cryptographic Circuits and Systems, IEEE Circuits and Systems Magazine, vol. 16, no. 4, pp. 6-32, 2016.

B. Moons, D. Bankman, and M. Verhelst, Embedded Deep Learning: Algorithms, Architectures and Circuits for Always-on Neural Network Processing, Springer, 2019.

X. Zheng, B. Wang, C. Zhou, X. Wei and Q. Zhang, śParallel DNA Arithmetic Operation With One Error Detection Based on 3-Moduli Set,IEEE Transactions on NanoBioscience, vol. 15, no. 5, pp. 499-507, 2016.

K. Navi, A. S. Molahosseini, and M. Esmaeildoust, śHow to Teach Residue Number System to Computer Scientists and Engineers, IEEE Transactions on Education, vol. 54, no. 1, pp. 156163, 2011.

P. V. A. Mohan, śRNS-to-binary converter for a new three-moduli set {2n+1 −1.2n.2n−1}, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 9, pp. 775779, Sep. 2007.

P. V. A. Mohan and A. B. Premkumar, RNS-to-binary converters for two fourmoduli set {2n − 1.2n.2n + 1.2n+1 − 1} and {2

n − 1.2n.2n + 1.2n+1 + 1}, IEEE Trans. Circuits Syst. I, Reg. Papers,vol. 54, no. 6, pp. 12451254, Jun. 2007.

Y.Wang, X. Song, M. Aboulhamid, and H. Shen, śAdder based residue to binary numbers converters for{2n − 1.2n.2n + 1}, IEEE Trans.Signal Process., vol. 50, no. 7, pp. 17721779, Jul. 2002.

A. Hiasat and A. Sweidan, Residue number system to binary converter for the moduli set (2n−1.2 n −1.2 n + 1), Journal of Systems Architecture, vol. 49, no. 1-2, pp. 5358, 2003.

Mohan, P.V.A. New reverse converters for the moduli set {2

n − 1.2n + 1.2n −3.2n + 3}. Int. J. Electron. Commun., 2,643658, 2008.

A. S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, and S. Timarchi,śEfficient reverse converter designs for the new 4-moduli sets {2n − 1.2n.2n + 1.22n+1 − 1}17 maja 2020 str. 18/19 and {2n − 1.2n + 1.2n.22n + 1} based on new CRTs, IEEE Trans. Circuits Syst.I, Reg. Papers, vol. 57, no. 4,pp. 823835, Apr. 2010.

A. S. Molahosseini, A. A. E. Zarandi, P. Martins and L. Sousa, śA Multifunctional Unit for Designing Efficient RNS-Based atapaths,IEEE Access, vol. 5, pp. 25972-25986, 2017.

P. M. Matutino, R. Chaves, and L. Sousa, śBinary-to-RNS Conversion Units for moduli {2n ± 3}, 2011 14th Euromicro Conference on Digital System Design, 2011.

S. Kumar and C.-H. Chang, śA VLSI-efficient signed magnitude comparator for {2n − 1.2n.2n+1 − 1} RNS, 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016.

A. A. E. Zarandi, A. S. Molahosseini, L. Sousa, and M. Hosseinzadeh, śAn Efficient Component for Designing Signed Reverse Converters for a Class of RNS Moduli Sets of Composite Form {2k.2P − 1} IEEE Transactions on Very Large on Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 4859, 2017.

Didier, L.-S. and Rivaille, P.-Y. (2009) A generalization of a fast RNS conversion for a new 4-modulus Base. IEEE Trans. Circuits Syst. II, 56, 4650.

Jaberipur, G. and Ahmadifar, H. (2013) A ROM-less reverse RNS converter for moduli set {2 q ± 1, 2q ± 3}. IET Comput. Digit. Tech., 8, 1122.

H. Ahmadifar and G. Jaberipur, śA New Residue Number System with 5-Moduli Set:{22q, 22q ± 3, 22q ± 1}, The Computer Journal, vol. 58, no. 7, pp. 15481565,Feb. 2014.

DOI: https://doi.org/10.7494/csci.2021.22.1.3823

### Refbacks

- There are currently no refbacks.