A CELLULAR AUTOMATA MODELS OF EVOLUTION OF TRANSPORTATION NETWORKS

Authors

  • Pawel Topa AGH University of Science and Technology
  • Mariusz Paszkowski

DOI:

https://doi.org/10.7494/csci.2002.4.1.3596

Abstract

We present a new approach to modelling o f transportation networks. Supply o f resources and their influence on the evolution o f the consuming environment is a principal problem considered. We present two concepts, which are based on cellular automata paradigm. In thefirst model SCAMAN {Simple CellularAutomata Model ofAnastomosing NetWork), the system is represented by a 2D mesh o f elementary cells. The rules o f interaction between them are introducedfor modelling of the waterflow and other phenomena connected with anastomosing river. Due to limitations o f SCAMAN model, we introduce a supplementary model. The MANGraCA {Model o fAnastomosing NetWork with Graph o f Cellular Automa ta) model beside the classical mesh o f automata, introduces an additional structure: the graph o f cellular automata, which represents the network pattern. Finally we discuss the prospective applications of the models. The concepts offuturę implementation are also presented.

Downloads

Download data is not yet available.

References

Helbing D., Herrmann H.J., Schreckenberg M., Wolf D. (eds): Traffic and granular flow'99. Berlin, Springer 2000

Yang H., Bell M.G.H.: Model and algorithmsfor road network desing: a review and some new developments. Transportation

Reviews, 18, 1998, 257-278

Schrijnen P.M.: Infrastructure networks and red green patterns in city regions. Landscape and Urban Planing, 48, 2000, 191-204

Manna S.S.: Branched tree structures: from polymers to river network. Physica A, 1998, 254

Banavar J.R., Maritan A., Rinaldo A.: Size andform in efficient transportation networks. Naturę, 339, May 1999, 130-132

Dodds PS., Rothman D.H.: Geometry o f river networks I: Scaling, fluctations, and deviatons.

Phys. Rev. E, January 2001, http://segovia.mit.edu.

Rodriguez-Iturbe I., Rinaldo A.: Fractal River Basins. Chance and Self-Organizations. Cam bridge, Cambridge University Press 1997

Makaske B.: Anastomosing Rivers: Forms, Processes and Sediments. The Royal Dutch Geo- graphical Society, Faculty of Geographical Sciences University of Utrecht 1998

Gradziński R., Baryła J., Danowski W., Doktor M., Gmur D.,

Gradziński M., Kędzior A., Paszkowski M., Soja R., Zieliński T., urek S.: Anastomosing System o f the Upper Narew River, NE. Poland. Annales Societatis Geologorum Poloniae, 70, 2000, 219-229

Jones L.S., Schumm S.A.: Causes o f avulsion: an overview. Int. Ass. Sediment. Spec. Publ, 28, 1999, 171-178

Carmeliet P.J.: Angiogenesis in cancer and other diseases. Naturę 407, September 2000, 249-257

Yancopoulos G.D., Davis S., Gale N.W., Rudge J.S., Wiegand S.K., Holash J.: Yascular- specific growth factors and blood vessel formation. Naturę, 407, September 2000, 242-248

Mandelbrot B.: The Fractal Geometry o f Naturę. New York, W.H. Freeman and Co. 1982 Wolfram S.: Two-dimensional cellular automata. Journal of Statistical Physics, 38, 5-6, March

, 901-946

Topa P.: Riverflows modelled by cellular automata. [In:] Bubak M., Mościński J., Noga M. (eds), Proceedings of The First Worldwide SGI Users' Conference, Kraków, Poland, October 2000, Academic Computer Centre - CYFRONET

Di Gregorio S., Serra R.: An empirical methodfor modelling and simulating some complex macroscopoc phenomena by cellular automata. Futurę Generation Computer Systems, 16, 1999, 259-271

Miyamoto H. Sasaki S.: Simulating lava flows by an improved Cellular Automata method. Computers & Geosciences, 23, 3, 1997, 283-292

Masselot A., Chopard B.: Celular automata modelling o f snów transport by wind. [In:] Don- garra J., Madsen K., Wasniewski J. (eds), Applied Parallel Computing: computation in phy sics, chemistry and engineering Sciences: PARA'95: Proceedings, vol. 1041 of Lecture Notes in Computer Sciences, Berlin, Springer 1996, 408-418

Chopard B., Droz M.: Cellular Automata model fo r heat conduction in fluid. Phys. Lett. A,

, 1996

Chopard B., Dupuis A., Luthi P.: A Cellular Automata fo r urban traffic and its aplication to the city o f Geneva. [In:] Schreckenberg M., Wolf D.E. (eds), Proceedings of Traffic and Gra- nular Flow'97, Springer-Verlag 1998, 153-168

Bubak M., Czerwiński P.: Traffic simulation using cellualar automata and continous model. Computer Physics Communications, 121-122, 1999, 395-98

Caldareli G., Giacometti A., Maritan A., Rodriguez-Iturbe I., Rinaldo G.: Cellular modelsfor River Networks. Submitted to Water Resource Research, 2001

Kramer S., Marde M.: Evolution o f river networks. Phys. Rev. Lett., 68, 1992, 205-209 Marder S.P.: Nonlinear models o f river networks. Austin, University of Texas, 1993 (Ph.D. thesis)

Dzwinel W., Aida W., Kitowski J., Yuen D.A.: Using discrete particles as a natural solver in simulating multiple-scale phenomena. Molecular Simulation, 25, 2000, 361-385

Spezzano G., Talia D.: Programming cellular automata algorithms on parallel computers. Futurę Generations Computer Systems, 16, 2-3, Dec. 1999, 203-216

Downloads

Published

2020-01-02

Issue

Section

Articles

How to Cite

Topa, P., & Paszkowski, M. (2020). A CELLULAR AUTOMATA MODELS OF EVOLUTION OF TRANSPORTATION NETWORKS. Computer Science, 4(1). https://doi.org/10.7494/csci.2002.4.1.3596