Evolutionary Multi-Agent System with Crowding Factor and Mass Center mechanisms for Multiobjective Optimisation

Authors

  • Mateusz Różański Akademia Górniczo-Hutnicza
  • Leszek Siwik AGH University of Science and Technology

DOI:

https://doi.org/10.7494/csci.2019.20.3.3339

Keywords:

evolutionary computation, multi-agent system, multiobjective optimisation

Abstract

This work presents some additional mechanisms for Evolutionary Multi-Agent Systems for Multiobjective Optimisation trying to solve problems with population stagnation and loss of diversity. Those mechanisms reward solutions located in a less crowded neighborhood and on edges of the frontier. Both techniques have been described and also some preliminary results have been shown.

Downloads

Download data is not yet available.

Author Biography

  • Mateusz Różański, Akademia Górniczo-Hutnicza
    PhD student, WIET

References

Byrski A., Dreżewski R., Siwik L., Kisiel-Dorohinicki M.: Evolutionary multi-agent systems. In: The Knowledge Engineering Review, vol. 30:2, pp. 171–186,2015.

Byrski A., Siwik L., Kisiel-Dorohinicki M.: Designing population-structured evo-lutionary computation systems. In: Methods of Artificial Intelligence (AI-METH2003), pp. 91–96. Gliwice, 2003.

Coello Coello C.A., Lemont G.B., Van Veldhiuzen D.A.: Evolutionary Algorithmsfor Solving Multi-Objective Problems. Springer, New York, 2002. ISBN 978-0-387-33254-3.

Deb K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley& Sons, 2008.

Dreźewski R., Siwik L.: Co-evolutionary multi-agent system with predator-preymechanism for multi-objective optimization. In: International Conference onAdaptive and Natural Computing Algorithms, vol. 4431, pp. 67–76. Warsaw, 2007.

Dreżewski R., Siwik L.: Techniques for Maintaining Population Diversity in Clas-sical and Agent-Based Multi-objective Evolutionary Algorithms. In: Y. Shi,G.D. van Albada, J. Dongarra, P.M.A. Sloot, eds.,Computational Science -ICCS 2007, 7th International Conference, Beijing, China, May 27 - 30, 2007,Proceedings, Part II,LNCS, vol. 4488, pp. 904–911. Springer-Verlag, Berlin,Heidelberg, 2007.URLhttp://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-72586-2_126. The final publication is available at Springer viahttp://dx.doi.org/10.1007/978-3-540-72586-2_126.

Dreżewski R., Siwik L.:Agent-Based Multi-Objective Evolutionary Algo-rithm with Sexual Selection.In:Proceedings of the IEEE Congress onEvolutionary Computation, CEC 2008, June 1-6, 2008, Hong Kong, China.IEEE, 2008.URLhttp://dx.doi.org/http://dx.doi.org/10.1109/CEC.2008.4631296. The final publication is available viahttp://dx.doi.org/10.1109/CEC.2008.4631296.

Dreżewski R., Siwik L.: A Review of Agent-Based Co-Evolutionary Algorithmsfor Multi-Objective Optimization. In: Y. Tenne, C.K. Goh, eds.,ComputationalIntelligence in Optimization. Aplication and Implementations. Springer-Verlag,Berlin, Heidelberg, 2010. URLhttp://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-12775-5_8. The final publication is available at Springer viahttp://dx.doi.org/10.1007/978-3-642-12775-5_8.

Eiben A.E., Smith J.E.:Introduction to Evolutionary Computing 2nd edition.SpringerVerlag, 2015. ISBN 3662448734.

Jong K.A.D.:Evolutionary computation - a unified approach.MIT Press, 2016.ISBN 9780262041942.

Kisiel-Dorohinicki M.:Agentowe architektury populacyjnych systemw inteligencjiobliczeniowej. Wydawnicta AGH, Krakow, 2013. ISBN 978-83-7464-588-1.

Siwik L., Kisiel-Dorohinicki M.: Elitism in agent-based evolutionary multiobjec-tive optimization. In:Inteligencia Artificial. Revista Iberoamericana de Inteligen-cia Artificial, vol. 9, pp. 41–48, 2005.

Siwik L., Natanek S.: Solving constrained multi-criteria optimization tasks us-ing Elitist Evolutionary Multi-Agent System. In:2008 IEEE Congress on Evo-lutionary Computation (IEEE World Congress on Computational Intelligence),pp. 3358–3365. 2008. ISSN 1089-778X. URLhttp://dx.doi.org/10.1109/CEC.2008.4631252.

Siwik L., Sikorski P.: Efficient Constrained Evolutionary Multi-Agent System forMulti-objective Optimization. In:2008 IEEE Congress on Evolutionary Com-putation (IEEE World Congress on Computational Intelligence), pp. 3212–3219.2008. ISSN 1089-778X. URLhttp://dx.doi.org/10.1109/CEC.2008.4631233.

Zitzler E., Thiele L.: Multiobjective optimization using evolutionary algorithmsA comparative case study. In:Parallel Problem Solving from Nature PPSN V.Lecture Notes in Computer Science, vol. 1498, pp. 292–301. Springer, Amsterdam,1998.

Downloads

Published

2019-08-25

Issue

Section

Articles

How to Cite

Evolutionary Multi-Agent System with Crowding Factor and Mass Center mechanisms for Multiobjective Optimisation. (2019). Computer Science, 20(3). https://doi.org/10.7494/csci.2019.20.3.3339