QUANTUM MECHANICAL CALCULATIONS OF ELASTIC PROPERTIES OF DOPED TETRAGONAL YTTRIA-STABILIZED ZIRCONIUM DIOXIDE

Yuriy Natanzon, Zbigniew Łodziana

Abstract


We report first principles calculations of the electronic and elastic properties of yttriastabilized tetragonal zirconium dioxide doped with metal oxides like: GeO2, TiO2, SiO2,MgO and Al2O3. It is shown that addition of such dopants affects selected elastic propertiesof ZrO2, which is driven by the attraction of electron density by dopant atom and creationof stronger dopant–oxygen bonds. This effect contributes to the increase of superplasticityof doped material.

Keywords


Y-stabilized zirconia; superplasticity; net charge; ab initio calculations

Full Text:

PDF

References


Singhal S. C.: Advances in solid oxide fuel cell technology. Solid State Ionics 135, 305 (2000)

Zhou N., Liu J., Lin B.: Refractory raw materials in China. American Ceramic Society Bulletin 84, 20 (2005)

Schwartz M. M.: Encyclopedia of Materials, Parts, and Finishes. CRC Press (2002), p. 888

Jimenez-Melendo M., Dominiguez-Rodriguez A., Bravo-Lełn A.: Superplastic Flow of Fine-Grained Yttria-Stabilized Zirconia Polycrystals: Constitutive Equation and Defromation Mechanisms. J. Am. Cem. Soc. 81, 2761 (1998)

Kuwabara A., Nakano M., Yoshida H., Ikuhara Yu., Sakuma T.: Superplastic flow

stress and electronic structure in yttria-stabilized tetragonal zirconia polycrystals

doped with GeO2 and TiO2. Acta Materialia 52, 5563 (2004)

Hiraga K.: Development of High-Strain-Rate superplastic Oxide Ceramics. Journal of the Ceramic Society of Japan 115, 395 (2007)

Yoshida H.: Doping dependence of High Temperature Plastic Flow Behaviour in TiO2 and GeO2-doped Tetragonal ZrO2 Polycrystals. Journal of the Ceramic Society of Japan 114, 155 (2006)

Sakka Y., Suzuki T. S., Matsumoto T., Morita K., Hiraga K., Moriyoshi Y.:Effect of titania and magnesia addition to 3 mol% yttria doped tetragonal zirconia on some diffusion related phenomena. Solid State Ionics 172, 499 (2004)

Berbon M. Z., Langdon T. G.: An examination of the flow process in superplastic yttria-stabilized tetragonal zirconia. Acta Materialia 47, 2485 (1999)

Eichler A.: Tetragonal Y-doped zirconia: Structure and ion conductivity. Phys. Rev. B 64, 174103 (2001)

McComb D.W.: Bonding and electronic structure in zirconia pseudopolymorphs investigated by electron energy-loss spectroscopy. Phys. Rev. B 54, 7094 (1996)

Bogicevic A., Wolverton C., Crosbie G. M., Stechel E. B.: Defect ordering in aviovalently doped cubic zirconia from first principles. Phys. Rev. B 64, 014106 (2001)

Kohn W., Sham L. J.: Self-consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, 1133 (1965)

Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B.

, 6671 (1992).

Soler J., Artacho E., Gale J. D., Garc´ıa A., Junquera J., Ordejón P., S´anchezPortal D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002)

Ordejón P., S´anchez-Portal D., Garc´ıa A., Artacho E., Junquera J., Soler J.: Large scale DFT calculations with SIESTA. RIKEN Review 29, 42 (2000)

Artacho E., Gale J. D., Garc´ıa A., Junquera J., Martin R. M., Ordejón

P., S´anchez-Portal D., Soler J.: SIESTA 2.0. User’s Guide. Available from http://www.uam.es/siesta

Murnaghan F. D.: The Compressibility of Media under Extreme Pressures. Proceedings of National Academy of Sciences 30, 244 (1944)

Howard C. J., Hill R. J., Reichert B. E.: Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction. Acta Crystallogr. B: Struct. Sci. 44, 116 (1988)

Teufer G.: The crystal structure of tetragonal ZrO2. Acta Cryst. 15, 1187 (1962)

Gómez-Garc´ıa D., Mart´ınez-Fern´andez D., Dom´inguez-Rodr´iguez A., Castaing J.: Mechanisms of High-Temperature Creep of Fully Stabilized Zirconia Single Crystals as a Function of the Yttria Content. J. Am. Ceram. Soc. 80, 1668 (1997)

See e.g. Numerical Recipes: The art of scientific computing. – Press et al., (Eds.), Cambridge University Press, New York, 1990

Troullier N., Martins J. L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)

Perdew J. L., Burke K., Ernzerhof M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996)




DOI: https://doi.org/10.7494/csci.2008.9.3.87

Refbacks

  • There are currently no refbacks.