APPLICATION OF MULTI-CRITERIA ANALYSIS BASED ON THE INDIVIDUAL PSYCHOLOGICAL PROFILE FOR RECOMMENDER SYSTEMS

Authors

  • Maria Rafalak Polish Japanese Academy of Information Technology
  • Janusz Granat National Institute of Telecomunications
  • Andrzej Piotr Wierzbicki National Institute of Telecomunications,

DOI:

https://doi.org/10.7494/csci.2016.17.4.503

Keywords:

recommender systems, multi-criteria analysis, user profiling

Abstract

This paper presents a novel approach for user classification exploiting multicriteria
analysis. This method is based on measuring the distance between an
observation and its respective Pareto front. The obtained results show that the
combination of the standard KNN classification and the distance from Pareto
fronts gives satisfactory classification accuracy – higher than the accuracy obtained
for each of these methods applied separately. Conclusions from this
study may be applied in recommender systems where the proposed method
can be implemented as the part of the collaborative filtering algorithm.

Downloads

Download data is not yet available.

Author Biographies

  • Maria Rafalak, Polish Japanese Academy of Information Technology
    Phd student
  • Janusz Granat, National Institute of Telecomunications
    PhD
  • Andrzej Piotr Wierzbicki, National Institute of Telecomunications,
    Professor

References

Altman N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, vol. 46(3), pp. 175–185, 1992.

Association A.E.R., Association A.P., on Measurement in Education N.C., on Standards for Educational J.C., (US) P.T.: Standards for educational and psychological testing. Amer Educational Research Assn, 1999.

Bonhard P., Harries C., McCarthy J., Sasse M.A.: Accounting for taste: using profile similarity to improve recommender systems. Proceedings of the SIGCHI conference on Human Factors in computing systems, pp. 1057–1066, ACM, 2006.

Breese J.S., Heckerman D., Kadie C.: Empirical analysis of predictive algorithms for collaborative filtering. Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pp. 43–52, Morgan Kaufmann Publishers Inc., 1998.

Condliff M.K., Lewis D.D., Madigan D., Posse C.: Bayesian mixed-effects models for recommender systems. ACM SIGIR’99 Workshop on Recommender Systems: Algorithms and Evaluation, vol. 15, Citeseer, 1999.

González G., López B., de la Rosa J.L.: A multi-agent smart user model for crossdomain recommender systems. Proceedings of Beyond Personalization, 2005.

Gross M., Heinrichs H.: Environmental sociology: European perspectives and interdisciplinary challenges. Springer Science & Business Media, 2010.

Hsiao K.J., Xu K., Calder J., Hero A.O.: Multi-criteria anomaly detection using Pareto Depth Analysis. Advances in Neural Information Processing Systems, pp. 845–853, 2012.

Hu R., Pu P.: A study on user perception of personality-based recommender systems. User Modeling, Adaptation, and Personalization, pp. 291–302, Springer, 2010.

Jaworowska A., Brzezińska U.: BIP Bochumski Inwentarz Osobowościowych Wyznaczników Pracy. Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego, 2014.

Kaszuba T., Hupa A., Wierzbicki A.: Advanced feedback management for internet auction reputation systems. Internet Computing, IEEE, vol. 14(5), pp. 31–37, 2010.

Lops P., De Gemmis M., Semeraro G.: Content-based recommender systems: State of the art and trends. Recommender systems handbook, pp. 73–105, Springer, 2011.

Masthoff J.: Group modeling: Selecting a sequence of television items to suit a group of viewers. Personalized Digital Television, pp. 93–141, Springer, 2004.

Masthoff J.: The pursuit of satisfaction: affective state in group recommender systems. User Modeling 2005, pp. 297–306, Springer, 2005.

Masthoff J., Gatt A.: In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems. User Modeling and UserAdapted Interaction, vol. 16(3–4), pp. 281–319, 2006.

Munda G.: Social multi-criteria evaluation for a sustainable economy. Springer, 2008.

Nunes M.A.S.N.: Recommender systems based on personality traits. Ph.D. thesis, Université Montpellier II-Sciences et Techniques du Languedoc, 2008.

Rajaraman A., Ullman J.D., Ullman J.D., Ullman J.D.: Mining of massive datasets, vol. 77. Cambridge University Press Cambridge, 2012.

Rentfrow P.J., Gosling S.D.: The do re mi’s of everyday life: the structure and personality correlates of music preferences. Journal of personality and social psychology, vol. 84(6), p. 1236, 2003.

Ricci F., Rokach L., Shapira B.: Introduction to recommender systems handbook. Springer, 2011.

Rust J., Golombok S.: Modern psychometrics: The science of psychological assessment. Routledge, 2014.

Sarwar B., Karypis G., Konstan J., Riedl J.: Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web, pp. 285–295, ACM, 2001.

Turek P., Wierzbicki A., Nielek R., Hupa A., Datta A.: Learning about the quality of teamwork from wikiteams. Social Computing (SocialCom), 2010 IEEE Second International Conference, pp. 17–24, IEEE, 2010.

Ward R.: Compressed sensing with cross validation. Information Theory, IEEE Transactions on, vol. 55(12), pp. 5773–5782, 2009.

Wierzbicki A.: The case for fairness of trust management. Electronic Notes in Theoretical Computer Science, vol. 197(2), pp. 73–89, 2008.

Wierzbicki A., Makowski M., Wessels J., et al.: Model-based decision support methodology with environmental applications. Kluwer Academic Dordrecht, The Netherlands, 2000.

Wierzbicki A., Szczepaniak R., Buszka M.: Application layer multicast for efficient peer-to-peer applications. Internet Applications. WIAPP 2003. Proceedings. The Third IEEE Workshop on, pp. 126–130, IEEE, 2003.

Downloads

Published

2017-01-10

Issue

Section

Articles

How to Cite

Rafalak, M., Granat, J., & Wierzbicki, A. P. (2017). APPLICATION OF MULTI-CRITERIA ANALYSIS BASED ON THE INDIVIDUAL PSYCHOLOGICAL PROFILE FOR RECOMMENDER SYSTEMS. Computer Science, 17(4), 503. https://doi.org/10.7494/csci.2016.17.4.503