Jacek Korchowiec, Jakub Lewandowski


It is demonstrated that the elongation cutoff technique (ECT) substantially speeds up thequantum-chemical calculation at Hartree-Fock (HF) level of theory and is especially wellsuited for parallel performance. A comparison of ECT timings for water chains with thereference HF calculations is given. The analysis includes the overall CPU (central processingunit) time and its most time consuming steps.


order-N methods; fragmentation techniques; elongation method

Full Text:



Halgaker T., Jorgensen P., Olsen J.: Molecular Electronic-Structure Theory. Chichester, John Wiley & Sons LTD, 2000

Aoki Y., Imamura A.: Local Density of States of Aperiodic Polymers using the Localized Orbitals from an ab initio elongation method. J. Chem. Phys., vol. 97, 1992, 8432–8440

Deev V., Collins M. A.: Approximate ab initio energies by systematic molecular Fragmentation. J. Chem. Phys., vol. 122, 2005, 154102–154111

Exner T. E., Mezey P. G.: The Field-Adapted ADMA Approach: Introducing Point Charges. J. Phys. Chem. A, vol. 108, 2004, 4301–4309

Fedorov D. G., Kitaura K.: On the Accuracy of the 3-Body Fragment Molecular Orbital Method (FMO) Applied to Density Functional Theory. Chem. Phys. Lett., vol. 389, 2004, 129–134

Gu F. L., Aoki Y., Korchowiec J., Imamura A., Kirtman B.: A New Localization Scheme for the Elongation Method. J. Chem. Phys., vol. 121, 2004, 10385–10391

Imamura A., Aoki Y., Maekawa K.: A Theoretical Synthesis of Polymers by Using Uniform Localization of Molecular Orbitals: Proposal of an Elongation Method. J. Chem. Phys., vol. 95, 1991, 5419–5431

Jiang N., Ma J., Jiang Y.: Electrostatic Field-Adapted Molecular Fractionation with Conjugated Caps for Energy Calculations of Charged Biomolecules. J. Chem. Phys., vol. 124, 2006, 114112–114119

Korchowiec J., Gu F. L., Imamura A., Kirtman B., Aoki Y.: Elongation Method with Cutoff Technique for Linear SCF Scaling. Int. J. Quantum Chem., vol. 102, 2005, 785–794

Li S., Li W., Fang T.: An Efficient Fragment-Based Approach for Predicting the Ground-State Energies and Structures of Large Molecules. J. Am. Chem. Soc., vol. 127, 2005, 7215–7226

Makowski M., Korchowiec J., Gu F. L., Aoki Y.: Efficiency and Accuracy of the Elongation Method as Applied to the Electronic Structure of Large Systems. J. Comput. Chem., vol. 27, 2006, 1603–1619

White C. A., Johnson B. G., Gill P. M. W., Head-Gordon M.: Linear Scaling Density Functional Calculations via the Continuous Fast Multipole Method. Chem. Phys. Lett., vol. 253, 1996, 268–278

Burant J. C., Scuseria G. E., Frisch M. J.: A Linear Scaling Method for Hartree- Fock Exchange Calculations of Large Molecules. J. Chem. Phys., vol. 105, 1996, 8969–8972

Schwegler E., Challacombe M.: Linear Scaling Computation of the Hartree-Fock Exchange Matrix. J. Chem. Phys., vol. 105, 1996, 2726–2734

Salek P., Hyst S., Thygersen L., Jyrgensen P. Manninen P., Olsen J., Jansik B., Reine S., Pawlowski F., Tellgren E., Helgaker T., Coriani S.: Linear-Scaling Implementation of Molecular Electronic Self-Consistent Field Theory. J. Chem.

Phys., vol. 126, 2007, 114110–114116

Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery J. A. Jr: General Atomic and Molecular Electronic Structure system.

J. Comput. Chem., vol. 14, 1993, 1347–1363

Hehre W. J., Stewart R. F., Pople J. A.: Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. J. Chem. Phys., vol. 51, 1969, 2657–2664

Ditchfield R., Hehre W. J., Pople J. A.: Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys., vol. 54, 1971, 724–728

Chaban G., Schmidt M. W., Gordon M. S.: Approximate Second Order Method for Orbital Optimization of SCF and MCSCF Wavefunction. Theoret. Chem. Acc., vol. 97, 1997, 88–95

DOI: https://doi.org/10.7494/csci.2008.9.3.67


  • There are currently no refbacks.