ELONGATION CUTOFF TECHNIQUE: PARALLEL PERFORMANCE
DOI:
https://doi.org/10.7494/csci.2008.9.3.67Keywords:
order-N methods, fragmentation techniques, elongation methodAbstract
It is demonstrated that the elongation cutoff technique (ECT) substantially speeds up thequantum-chemical calculation at Hartree-Fock (HF) level of theory and is especially wellsuited for parallel performance. A comparison of ECT timings for water chains with thereference HF calculations is given. The analysis includes the overall CPU (central processingunit) time and its most time consuming steps.Downloads
References
Halgaker T., Jorgensen P., Olsen J.: Molecular Electronic-Structure Theory. Chichester, John Wiley & Sons LTD, 2000
Aoki Y., Imamura A.: Local Density of States of Aperiodic Polymers using the Localized Orbitals from an ab initio elongation method. J. Chem. Phys., vol. 97, 1992, 8432–8440
Deev V., Collins M. A.: Approximate ab initio energies by systematic molecular Fragmentation. J. Chem. Phys., vol. 122, 2005, 154102–154111
Exner T. E., Mezey P. G.: The Field-Adapted ADMA Approach: Introducing Point Charges. J. Phys. Chem. A, vol. 108, 2004, 4301–4309
Fedorov D. G., Kitaura K.: On the Accuracy of the 3-Body Fragment Molecular Orbital Method (FMO) Applied to Density Functional Theory. Chem. Phys. Lett., vol. 389, 2004, 129–134
Gu F. L., Aoki Y., Korchowiec J., Imamura A., Kirtman B.: A New Localization Scheme for the Elongation Method. J. Chem. Phys., vol. 121, 2004, 10385–10391
Imamura A., Aoki Y., Maekawa K.: A Theoretical Synthesis of Polymers by Using Uniform Localization of Molecular Orbitals: Proposal of an Elongation Method. J. Chem. Phys., vol. 95, 1991, 5419–5431
Jiang N., Ma J., Jiang Y.: Electrostatic Field-Adapted Molecular Fractionation with Conjugated Caps for Energy Calculations of Charged Biomolecules. J. Chem. Phys., vol. 124, 2006, 114112–114119
Korchowiec J., Gu F. L., Imamura A., Kirtman B., Aoki Y.: Elongation Method with Cutoff Technique for Linear SCF Scaling. Int. J. Quantum Chem., vol. 102, 2005, 785–794
Li S., Li W., Fang T.: An Efficient Fragment-Based Approach for Predicting the Ground-State Energies and Structures of Large Molecules. J. Am. Chem. Soc., vol. 127, 2005, 7215–7226
Makowski M., Korchowiec J., Gu F. L., Aoki Y.: Efficiency and Accuracy of the Elongation Method as Applied to the Electronic Structure of Large Systems. J. Comput. Chem., vol. 27, 2006, 1603–1619
White C. A., Johnson B. G., Gill P. M. W., Head-Gordon M.: Linear Scaling Density Functional Calculations via the Continuous Fast Multipole Method. Chem. Phys. Lett., vol. 253, 1996, 268–278
Burant J. C., Scuseria G. E., Frisch M. J.: A Linear Scaling Method for Hartree- Fock Exchange Calculations of Large Molecules. J. Chem. Phys., vol. 105, 1996, 8969–8972
Schwegler E., Challacombe M.: Linear Scaling Computation of the Hartree-Fock Exchange Matrix. J. Chem. Phys., vol. 105, 1996, 2726–2734
Salek P., Hyst S., Thygersen L., Jyrgensen P. Manninen P., Olsen J., Jansik B., Reine S., Pawlowski F., Tellgren E., Helgaker T., Coriani S.: Linear-Scaling Implementation of Molecular Electronic Self-Consistent Field Theory. J. Chem.
Phys., vol. 126, 2007, 114110–114116
Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery J. A. Jr: General Atomic and Molecular Electronic Structure system.
J. Comput. Chem., vol. 14, 1993, 1347–1363
Hehre W. J., Stewart R. F., Pople J. A.: Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. J. Chem. Phys., vol. 51, 1969, 2657–2664
Ditchfield R., Hehre W. J., Pople J. A.: Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys., vol. 54, 1971, 724–728
Chaban G., Schmidt M. W., Gordon M. S.: Approximate Second Order Method for Orbital Optimization of SCF and MCSCF Wavefunction. Theoret. Chem. Acc., vol. 97, 1997, 88–95