MODELING AND RENDERING OF CONVECTIVE CUMULUS CLOUDS FOR REAL-TIME GRAPHICS PURPOSES

Authors

  • Witold Alda Department of Computer Science, AGH University of Science and Technology, Cracow Poland
  • Paweł Kobak AGH University of Science and Technology, Krakow, Poland

DOI:

https://doi.org/10.7494/csci.2017.18.3.1491

Abstract

The paper presents a simulation and rendering model of three dimensional covective cloud evolution. The model is physically based, however its purpose is graphical. The main stress is put on balancing two parts of a model: the atmsphere simulation with convective motion of air and water vapor combined with rendering of semi-transparent and light-scattering clouds, in order to achieve realistic animation in real-time. We examine and compare two algorithmic approaches based on CPU and GPU computations.

Downloads

Download data is not yet available.

References

Dobashi Y., Kaneda K., Yamashita H., Okita T., Nishita T.: A simple, efficient method for realistic animation of clouds. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’00, pp. 19–28. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000. ISBN 1-58113-208-5. URL http://dx.doi.org/10.1145/344779.344795.

Harris M.J., Baxter W.V., Scheuermann T., Lastra A.: Simulation of cloud dynamics on graphics hardware. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS ’03, pp. 92–101. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2003. ISBN 1-58113-739-7. URL http://dl.acm.org/citation.cfm?id=844174. 844189.

University of Illinois, University of Illinois WW2010 Project. http://ww2010.atmos. uiuc.edu/%28Gh%29/guides/mtr/cld/cldtyp/home.rxml, 1997.

Meiner M., Doggett M.C., Hirche J., Kanus U., Straer W.: Efficient Space Leaping for Raycasting Architectures. In: K. Mueller, A.E. Kaufman, eds., Proceedings of the Joint IEEE TCVG and Eurographics Workshop on Volume Graphics in Stony Brook, New York, USA, June 21-22, 2001. Eurographics Association, 2001. ISBN 3-211-83737-X. URL http://dx.doi.org/http://www.eg.org/EG/DL/WS/VG01/Meissner/paper_full.pdf.

Miyazaki R., Yoshida S., Dobashi Y., Nishita T.: A Method for Modeling Clouds based on Atmospheric Fluid Dynamics. In: Proc. Pacific Graphics 2001, pp. 363–372. 2001.

Nagel K., Raschke E.: Self-organizing criticality in cloud formation? In: Physica A: Statistical Mechanics and its Applications, vol. 182(4), pp. 519 – 531, 1992. ISSN 0378-4371. URL http://dx.doi.org/10.1016/0378-4371(92)90018-L.

Neyret F.: Qualitative Simulation of Cloud Formation and Evolution. In: D. Thalmann, M.V. de Panne, eds., 8th Eurographics Workshop on Computer Animation and Simulation (EGCAS’97), pp. 113–124. Eurographics, Springer Wein, New York City, NY, 1997.

Nishita T., Shirai T., Tadamura K., Nakamae E.: Display of The Earth Taking into account Atmospheric Scattering. In: Proc. of SIGGRAPH’93, pp. 175–182. 1993.

O’Neil S.: GPU Gems 2, chap. 16. Accurate atmospheric scattering. AddisonWesley Professional, 2005. ISBN 0321335597.

Scharsach H.: Advanced GPU Raycasting. In: In Proceedings of CESCG 2005, pp. 69–76. 2005.

Stam J., Fiume E.: Turbulent wind fields for gaseous phenomena. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’93, pp. 369–376. ACM, New York, NY, USA, 1993. ISBN 0-89791601-8. URL http://dx.doi.org/10.1145/166117.166163.

Downloads

Published

2017-07-07

How to Cite

Alda, W., & Kobak, P. (2017). MODELING AND RENDERING OF CONVECTIVE CUMULUS CLOUDS FOR REAL-TIME GRAPHICS PURPOSES. Computer Science, 18(3). https://doi.org/10.7494/csci.2017.18.3.1491

Issue

Section

Articles

Most read articles by the same author(s)