Data mining and neural network simulations can help to improve Deep Brain Stimulation effects in Parkinson's Disease
DOI:
https://doi.org/10.7494/csci.2015.16.2.199Keywords:
Parkinson Disease, deep brain stimulation, neural computation, data miningAbstract
Parkinsons disease (PD) is primary related to substantia nigra degeneration and, thus, dopamine insufficiency. L-DOPA as a precursor of dopamine is the standard medication in PD. However, disease progression causes L-DOPA therapy efficiency decay (on-off symptom fluctuation), and neurologists often decide to classify patients for DBS (Deep Brain Stimulation) surgery. DBS treatment is based on stimulating the specific subthalamic structure: subthalamic nucleus (STN) in our case. As STN consists of parts with different physiological functions, finding the appropriate placement of the DBS electrode contacts is challenging. In order to predict the neurological effects related to different electrode-contact stimulations, we have tracked connections between the stimulated part of STN and the cortex with the help of diffusion tensor imaging (DTI). By changing a contacts number and amplitude of stimulus (proportional in size to stimulated area), we have determined connections to cortical areas and related neurological effects. We have applied data mining methods to predict which contact (and at what amplitude) should be stimulated in order to improve a particular symptom. We have compared different data mining methods: Wekas Random Forest classifier and Rough Set Exploration System (RSES). We have demonstrated that the Weka classifier was more accurate when predicting the effects of stimulations on general neurological improvements, while RSES was more accurate when using specific neurological symptoms. We have simulated other effects of stimulation related to the interruption of pathological oscillation in the basal ganglia found in PD. Our model represents possible STN neural population with inhibitory and excitatory connections that have pathologically synchronized oscillations. High-frequency electrical stimulation has interrupted synchronization. something that is also observed in PD patients.Downloads
References
Bazan J. G., Szczuka M.: RSES and RSESlib – A Collection of Tools for Rough Set Computations. In: W. Ziarko, Y. Yao, eds., Rough Sets and Current Trends in Computing, no. 2005 in Lecture Notes in Computer Science, pp. 106–113, Springer–Berlin–Heidelberg, 2001, http://link.springer.com/chapter/10.1007/3-540-45554-X_12.
Cassidy M., Mazzone P., Oliviero A., Insola A., Tonali P., Lazzaro V. D., Brown P.: Movement-related changes in synchronization in the human basal ganglia. Brain, vol. 125(6), pp. 1235–1246, 2002, http://dx.doi.org/10.1093/brain/awf135.
Cauda F., Giuliano G., Federico D., Sergio D., Katiuscia S.: Discovering the somatotopic organization of the motor areas of the medial wall using low-frequency BOLD fluctuations. Human brain mapping, vol. 32(10), pp. 1566–1579, 2011, http://dx.doi.org/10.1002/hbm.21132.
Ciecierski K., Raś Z. W., Przybyszewski A. W.: Selection of the Optimal Microelectrode during DBS Surgery in Parkinsons Patients. In: D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Kryszkiewicz, H. Rybinski, A. Skowron, Z. W. Raś, eds., Foundations of Intelligent Systems, vol. 6804, pp. 554–564, Springer, Berlin-Heidelberg, 2011, http://rd.springer.com/chapter/10.1007/978-3-642-21916-0_59.
Coenen V. A., Allert N., M ̈adler B.: A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochirurgica, vol. 153(8), pp. 1579–1585; discussion 1585, 2011, http://dx.doi.org/10.1007/s00701-011-1036-z.
Coenen V. A., Schlaepfer T. E., Allert N., Mädler B.: Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation. International Review of Neurobiology, vol. 107, pp. 207–234, 2012, http://dx.doi.org/10.1016/B978-0-12-404706-8.00011-5.
Frank E., Hall M., Holmes G., Kirkby R., Pfahringer B., Witten I. H., Trigg L.: Weka-A Machine Learning Workbench for Data Mining. In: O. Maimon, L. Rokach, eds., Data Mining and Knowledge Discovery Handbook, pp. 1269–1277, Springer US, 2010, http://link.springer.com/chapter/10.1007/978-0-387-09823-4_66.
Izhikevich E.: Which model to use for cortical spiking neurons? In: IEEE Transactions on Neural Networks, vol. 15(5), pp. 1063–1070, 2004, http://dx.doi.org/10.1109/TNN.2004.832719.
Izhikevich E. M.: Simple model of spiking neurons. In: IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, vol. 14(6), pp. 1569–1572, 2003, http://dx.doi.org/10.1109/TNN.2003.820440.
Jenkinson M., Bannister P., Brady M., Smith S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, vol. 17(2), pp. 825–841, 2002, http://www.psych.umn.edu/research/tricam/2_Jenkinson_NI_2002_MCFLIRT.pdf.
Krauth A., Blanc R., Poveda A., Jeanmonod D., Morel A., Székely G.: A mean three-dimensional atlas of the human thalamus: Generation from multiple histological data. NeuroImage, vol. 49(3), pp. 2053–2062, 2010, http://dx.doi.org/10.1016/j.neuroimage.2009.10.042.
Latteri A., Arena P., Mazzone P.: Characterizing Deep Brain Stimulation effects in computationally efficient neural network models. Nonlinear biomedical physics, vol. 5(1), p. 2, 2011, http://archive.biomedcentral.com/1753-4631/5/2/about.
Lester H., Arridge S. R.: A survey of hierarchical non-linear medical image registration. In: Pattern Recognition, vol. 32(1), pp. 129–149, 1999, http://dx.doi.org/10.1016/S0031-3203(98)00095-8.
Maintz J. B. A., Viergever M. A.: An overview of medical image registration methods, 1998, http://igitur-archive.library.uu.nl/math/2007-0118-200453/maintz_98_an_overview.pdf.
Mayer A. R., Zimbelman J. L., Watanabe Y., Rao S. M.: Somatotopic organization of the medial wall of the cerebral hemispheres: a 3 Tesla fMRI study. Neuroreport, vol. 12(17), pp. 3811–3814, 2001.
Rodriguez-Oroz M. C., Rodriguez M., Guridi J., Mewes K., Chockkman V., Vitek J., DeLong M. R., Obeso J. A.: The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain, vol. 124(9), pp. 1777–1790, 2001, http://dx.doi.org/10.1093/brain/124.9.1777.
Zheng Z., Shemmassian S., Wijekoon C., Kim W., Bookheimer S. Y., Pouratian N.: DTI correlates of distinct cognitive impairments in Parkinson’s disease. Human Brain Mapping, vol. 35(4), pp. 1325–1333, 2014, http://dx.doi.org/10.1002/hbm.22256.